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Error models for microarray intensities

Abstract

We derive the additive-multiplicative error model for microarray intensi-
ties, and describe two applications. For the detection of differentially expressed
genes, we obtain a statistic whose variance is approximately independent of
the mean intensity. For the post hoc calibration (normalization) of data with
respect to experimental factors, we describe a method for parameter estimation.
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1 Motivation

An error model is a description of the possible outcomes of a measurement. It depends on the
true value of the underlying quantity that is measured and on the measurement apparatus. For
microarrays, the quantities that one wants to measure are the abundances of specific molecules in
a biological sample. The measurement apparatus consists of a cascade of biochemical reactions
and an optical detection system with a laser scanner or a CCD camera. Biochemical reactions
and detection are performed in parallel, allowing up to a million measurements on one array.

What is the purpose of constructing error models for microarrays? There are three aspects:
1. An appreciation of the distribution of all possible outcomes of a measurement is necessary

for basinginferenceon one or a limited number of measurements. Consider an experiment in
which we want to compare gene expression in the colons of mice that were treated with a certain
substance and mice that were not. If we have many measurements, we can simply compare
their empirical distributions. For example, if the values from ten replicate measurements for the
DMBT1 gene in the treated condition are all larger than ten measurements from the untreated
condition, the Wilcoxon test tells us that with ap-value of10−5 the level of the transcript is really
elevated in the treated mice. But often it is not possible, too expensive, or unethical, to obtain
so many replicate measurements for all genes and for all conditions of interest. Often, it is also
not necessary. If we are sufficiently confident in an error model, we are able to draw significant
conclusions from fewer replicates.

2. An error model is an efficient tool for the summarization andreporting of experimental
results. If we have reason to be confident that the measured outcomes follow a certain distribu-
tion, then they are sufficiently described by that distribution’s parameters, e. g. mean and standard
deviation; it may then not be necessary to report all of the individual measurements.

3. An error model is a summary of past experience and of our understanding of the measure-
ment apparatus. It can be used forquality control : if the distribution of a new set of data greatly
deviates from the model, this may direct our attention to quality issues with these data.

2 The additive-multiplicative error model

Consider the following generic observation equation

z = f(x, y), (1)

wherez is the outcome of the measurement,x is the true underlying quantity that we want to
measure, the functionf represents the measurement apparatus, andy = (y1, . . . , yn) is a vector
that contains all other parameters on which the functioning of the apparatus may depend. The
functional dependence off on some of theyi may be known, on others it may not. Some of
theyi are controlled by the experimenter, some are not. If the measurement apparatus is well-
constructed, thenf is a well-behaved, smooth function, and we can write Eqn. (1) as

z = f(0, y) + f ′(0, y) x + O(x2), (2)
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wheref(0, y) is the baseline value that is measured ifx is zero,f ′ is the derivative off with
respect tox, f ′(0, y) is a gain factor, andO(x2) represents non-linear efffects. By proper design
of the experiment, the non-linear terms can be made negligibly small within the relevant range
of x. Examples for the parametersy in the case of microarrays are the efficiencies of mRNA ex-
traction, reverse transcription, labeling and hybridization reactions, amount and quality of probe
DNA on the array, unspecific hybridization, dye quantum yield, scanner gain, and background
fluorescence of the array. All of these have an influence either on the baselinef(0, y) or the gain
f ′(0, y). Ideally, the parametersy could be fixed exactly at some valuēy = (ȳ1, . . . , ȳn). In
practice, they will fluctuate around̄y between repeated experiments. If the fluctuations are not
too large, we can expand

f(0, y) ≈ f(0, ȳ) +
n∑

i=1

∂f(0, ȳ)

∂yi

(yi − ȳi) (3)

f ′(0, y) ≈ f ′(0, ȳ) +
n∑

i=1

∂f ′(0, ȳ)

∂yi

(yi − ȳi). (4)

The sums on the right hand sides of Eqns. (3) and (4) are linear combinations of a large number
n of random variables with mean zero. Thus, it is a reasonable approximation to modelf(0, y)
andf ′(0, y) as normally distributed random variables with meansa = f(0, ȳ) andb = f ′(0, ȳ)
and variancesσ2

a andσ2
b , respectively. Thus, omitting the non-linear term, Eqn. (2) leads to

z = a + ε + b x(1 + η), (5)

with ε ∼ N(0, σ2
a) andη ∼ N(0, σ2

b/b
2). This is theadditive-mulitplicative error model for

microarray data, which was proposed by [Ideker et al., 2001]. [Rocke and Durbin, 2001] pro-
posed it in the form

z = a + ε + b x exp(η), (6)

which is equivalent to Eqn. (5) up to first order terms inη. Models (5) and (6) differ significantly
only if the coefficient of variationσb/b is large. For microarray data, it is typically smaller than
0.2, thus the difference is of little practical relevance.

One of the main predictions of the error model (5) is the form of the dependence of the
variance Var(z) of z on its mean E(z):

Var(z) = v2
0 +

σ2
b

b2
(E(z)− z0)

2 , (7)

that is, a strictly positive quadratic function. In the following we will assume that the correlation
betweenε andη is negligible. Then the parameters of Eqn. (7) are related to those of Eqn. (5)
via v2

0 = σ2
a andz0 = a. If the correlation is not negliglible, the relationship is slightly more

complicated, but the form of Eqn. (7) remains the same.
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3 Nesting

Consider a situation in which the quantityx from Eqn. (6) is itself the result of a process whose
outcome is approximately described by an additive-multiplicative error model,

x = a′ + ε′ + b′ x′ exp(η′). (8)

The resulting distribution ofz can again be described by an additive-multiplicative model with
new parameters. This means that the class of models of the form (6) is closed under such hierar-
chical nesting, and the range of its applicability can be quite large.

For example, Eqn. (6) could be used as a model for microarray measurements in a study
of diseased tissues, withx the true abundance of a certain gene transcript in the tissue from
an individual patient, while (8) could model the population distribution of this gene’s transcript
levels in a set of similar tissues from different patients.

4 Detection of differentially expressed genes

Suppose we want to compare two measurementsz1, z2 that are distributed according to Eqn. (6)
with the same parametersa, b, σa, andσb, but possibly with different values ofx1, x2. We want
to find a functionh(z1, z2) that fulfills the two conditions:

(i) antisymmetry: h(z1, z2) = −h(z2, z1) ∀x1, x2

(ii) homoskedasticity: Var(h(z1, z2)) = const. independent ofx1, x2
(9)

An approximate solution is given by [Huber et al., 2003]

h(z1, z2) = arsinh

(
z1 − a

β

)
− arsinh

(
z2 − a

β

)
(10)

with β = σab/σb. If both z1 andz2 are large, this expression coincides with the log ratio

q(z1, z2) = log (z1 − a)− log (z2 − a) . (11)

However,q(z1, z2) has a large, diverging variance forzi → a, a singularity atzi = a, and is
not defined in the range of real numbers forzi < a. These unpleasant properties are important
for applications: many genes are not expressed or only weakly expressed in some, but not all
conditions of interest. That means, we need to compare conditions in which, for example,x1 is
large andx2 is small. The log ratio (11) is not a useful quantity for this purpose, since the second
term will wildly fluctuate and be sensitive to small errors in the estimation of the parametera.
In contrast, the statistic (10), which is called thegeneralized log-ratio[Rocke et al., 2004], is
well-defined everywhere and robust against small errors ina. It is always smaller in magnitude
than the log ratio (see also Fig.1),

|h(z1, z2)| < |q(z1, z2)| ∀z1, z2. (12)
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Figure 1: The shrinkage property of the generalized log ratioh. Blue diamonds and error bars
correspond to mean and standard deviation ofh(z1, z2), cf. Eqn. (10), black dots and error bars
to q(z1, z2), cf. Eqn. (11). Data were generated according to Eqn. (6) with x2 = 0.5, . . . , 15,
x1 = 2x2, a = 0, σa = 1, b = 1, σb = 0.1. The horizontal line corresponds to the true log
ratio log(2) ≈ 0.693. For intensitiesx2 that are larger than about ten times the additive noise
level σa, h andq coincide. For smaller intensities, we can see avariance-bias trade-off: q has
no bias but a huge variance, thus an estimate of the fold change based on a limited set of data
can be arbitrarily off. In contrast,h keeps a constant variance – for the price of systematically
underestimating the true fold change.

The exponentiated value
F̂C = exp(h(z1, z2)) (13)

can be interpreted as a shrinkage estimator for thefold-changex1/x2. It is more specific, i. e.
leads to fewer false positives in the detection of differentially expressed genes, than the naive
estimator(z1 − a)/(z2 − a) [Huber et al., 2002, Durbin et al., 2002].

5 Normalization and parameter estimation

The explanatory power of the model (6) can be greatly increased if we take into account the
systematic dependence of its parameters on known experimental factors. This is often called
normalization. A parametrization that captures the main factors that play a role in current exper-
iments is

zip = ai,s(p) + ε + bi,s(p)Bp xj(i),k(p) exp(η). (14)

Here,p indices the probes on the arrays andk = k(p) the genes. Each probe is intended to repre-
sent exactly one gene, but one gene may be represented by several probes.Bp is the probe affinity

5



of thep-th probe [Li and Wong, 2001, Irizarry et al., 2003]. i counts over the arrays and, if appli-
cable, over the different dyes.j = j(i) labels the biological conditions (e. g. normal/diseased).
ai,s(p) andbi,s(p) are normalization offsets and scale factors that may be different for eachi and
possibly for different groups of probess = s(p). Probes may be grouped according to their
physico-chemical properties [Wu and Irizarry, 2004] or array manufacturing parameters such as
print-tip [Dudoit et al., 2002] or spatial location. In the simplest case,ai,s(p) = ai andbi,s(p) = bi

are the same for all probes on an array [Beißbarth et al., 2000]. The noise termsε andη are as
above.

A method for the estimation of these parameters that uses the variance stabilizing transfor-
mation (10) was described by [Huber et al., 2002, Huber et al., 2003]; software is available as an
R package [Huber et al., 2004].
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