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CellCognition: time-resolved phenotype annotation
in high-throughput live cell imaging

Michael Held!»2, Michael H A Schmitz!-2, Bernd Fischer?, Thomas Walter?, Beate Neumann®, Michael H Olma!,

Matthias Peter!, Jan Ellenberg* & Daniel W Gerlich!-2

Fluorescence time-lapse imaging has become a powerful tool
to investigate complex dynamic processes such as cell division
or intracellular trafficking. Automated microscopes generate
time-resolved imaging data at high throughput, yet tools for
quantification of large-scale movie data are largely missing.
Here we present CellCognition, a computational framework

to annotate complex cellular dynamics. We developed a
machine-learning method that combines state-of-the-art
classification with hidden Markov modeling for annotation of
the progression through morphologically distinct biological
states. Incorporation of time information into the annotation
scheme was essential to suppress classification noise at state
transitions and confusion between different functional states
with similar morphology. We demonstrate generic applicability
in different assays and perturbation conditions, including a
candidate-based RNA interference screen for regulators of
mitotic exit in human cells. CellCognition is published as open
source software, enabling live-cell imaging-based screening
with assays that directly score cellular dynamics.

The availability of RNA interference (RNAi) technology for high-
throughput gene inactivation experiments, fluorescent protein
labeling and automated microscopy has opened a new era of
screening possibilities in higher eukaryotes!. Indeed, imaging-
based RNAi and chemical-compound screening has become
an important discovery tool for the identification of new gene
function, for example, in the regulation of DNA damage and
repair?, endocytosis® and mitosis*~°.

Imaging-based screens typically assay altered incidence of
cells with specific features in a population of fixed, fluorescently
labeled cells. The development of computational methods, such as
machine learning for supervised classification of cellular morpho-
logies, were key for the automated annotation of high-throughput
imaging data and the establishment of microscopy-based screen-
ing as a routine technology in a wide research community’~!2.

Many biological processes depend on stochastic events and
occur in an unsynchronized and transient manner, which limits

the applicability of single—time-point assays. Complex dynamic pro-
cesses such as cell division or intracellular trafficking demand time-
resolved, live-cell imaging!®. Automated microscopes now enable
high-throughput live-cell imaging with excellent spatiotemporal
resolution”"14, Computational analysis of such data is challenging
and existing machine learning and classification approaches do not
provide sufficient accuracy to correctly annotate cellular trajecto-
ries with multiple time points. Published live-cell imaging-based
RNAI screens have scored phenotypes either exclusively in cell popu-
lations®” or relied on visual evaluation of single-cell dynamics*.
However, cell population analysis cannot be used to detect stochastic
and transient phenotypes, and visual interpretation of morpho-
logical dynamics is very time-consuming and often unreliable.

To improve the classification accuracy of machine learning
methods, the temporal context can be taken into account. For
example, if the biological process underlying an assay is well
known, a biological model can be explicitly defined in an error
correction scheme that suppresses illegitimate stage transitions.
This has been applied to study the pattern of mitotic chromatin
morphology changes''12. However, temporal error correc-
tion based on biological a priori models limits the detection of
unexpected phenotypic variations, and the adaptation to different
biological questions requires re-implementation of the underlying
models by the user for each new assay.

Here we present CellCognition, an integrated computational
strategy that combines machine learning methods for supervised
classification and hidden Markov modeling to measure morpho-
logical dynamics in live-cell microscopic movies. Our error-
correction method does not require a priori definition of the temporal
progression, which enables its application to a wide range of assays
and phenotypic variations. We demonstrate efficiency and sensitivity
of the methodology in various assays and perturbation conditions.

RESULTS

High-throughput imaging of cellular dynamics

To visualize morphological dynamics of various cellular struc-
tures, we generated a collection of human HeLa reporter cell
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Figure 1 | Supervised machine learning and
classification of morphologies. (a) Confocal
images of live Hela cells stably expressing

a chromatin marker (H2B-mCherry), together
with GalT-EGFP to visualize the Golgi apparatus,
with mEGFP-o-tubulin or with the replication
factory marker EGFP-PCNA. The images show
maximum intensity projections of five

z dimension sections. (b) Live imaging of

Hela cells expressing H2B-mCherry at

different cell cycle stages or apoptosis
(two-dimensional time series imaged with
widefield epifluorescence 20x dry objective).
Colors indicate H2B-mCherry morphology
classifications used in subsequent figures.

(c) Object detection (contours) and classification
(colors) of cellular morphologies over time
corresponding to mitotic stages defined in b.
Scale bars, 10 um (a-c). (d) Confusion matrix
displays the matching of human annotations
versus annotation of support vector machines
with radial basis functions. (e) Automated
annotation of cell trajectories over time as
illustrated in c. Displayed are 80 randomly
selected trajectories (rows) over 40 time frames
(columns); time lapse, 4.6 min. Colors refer to
morphology classes as defined in b. Tick marks
indicate sampled time points. Mitotic events
were rare, and the trajectories contain many
single frames of mitotic annotations, likely
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These diverse secondary markers (Fig. 1a) are a well-suited test
case for the implementation of a generic annotation method. With
these cells, we performed multilocation time-lapse imaging on an
automated widefield epifluorescence microscope'®. We typically
recorded 96 movies in parallel, with a temporal resolution less
than 5 min over a total duration of 24 h, generating datasets of
about 100,000 images, or 200 gigabytes, per day and microscope.
The analysis of such a single experiment requires annotation of up
to 25 million cellular morphologies derived from about 260,000
objects per movie with a 10x microscope objective.

Machine learning and classification of morphologies
Timing measurements in live-cell imaging data are often based
on the progression through distinct morphologies that relate to
specific biological states. An excellent example for this is mitosis,
for which the chromatin morphology can be used to annotate the
canonical mitotic stages (Fig. 1b and Supplementary Movie 1).
We used this classic assay as a test case to measure timing events
at the single cell level.
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We first implemented a canonical strategy for automated
annotation of morphological classes’*!>, based on object
detection, multivariate feature extraction and supervised
machine learning (Fig. 1c). We used local adaptive threshold-
ing’, followed by a watershed split-and-merge segmentation
error correction!® to detect individual cells at an accuracy of
95.7% (1,876 objects; 2.6% oversegmented (falsely cut objects)
and 1.7% undersegmented (falsely merged objects)). For
each object, we then calculated 186 quantitative features!”-!8
(Supplementary Table 1 and Supplementary Fig. 1) describing
texture and shape. Next, we trained a support vector machine
classifier!® for the discrimination of eight different object
morphologies (Fig. 1b; interphase, six different mitotic stages
and apoptosis). We defined these classes by manual annotation
of 28-195 example objects. The agreement between human and
computer annotation was 94.6% (mean of all classes; fivefold
cross-validation), ranging between 75.0% for the early anaphase
class and 99.0% for interphase class (Fig. 1d). This performance
was similar to that of several previously reported supervised
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Figure 2 | Hidden Markov modeling of
progression through morphology stages.

(a) Automated extraction of mitotic events.
Cells were synchronized in silico to the prophase
to prometaphase transition. The plot displays
a random selection of 100 mitotic events
(from a total of 172 mitotic events from

eight movies; time lapse, 4.6 min). For plotted
data in the boxed region, contour overlays on
image data are shown on the right. Predicted
morphology classes were color-coded as in
Figure 1b. Asterisks indicate classification
errors. (b) Images of a single cell and
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corresponding trajectory of class labels.
Asterisks denote classification errors.
(c) Graph for all possible transitions between C
classes. Node 0 is the start node; all other

nodes are color-coded as defined in Figure 1b.

(d) Learned class transition probabilities based

on the trajectories shown in a. Normalization of
probabilities was per node. (e) Trellis diagram

showing all class prediction estimates for the

cell shown in b. Vertical columns correspond to

single time points, aligned to the images in b.

Rows correspond to morphology classes, labeled

as defined in Figure 1b. Probability estimates e
derived from the support vector machine are
coded by size. The Viterbi algorithm was used to
decode the overall most likely sequence (thick
black line). Thin black lines indicate the most
likely preceding state of a label at each given
time point. (f) Error correction as in e was
performed for all trajectories shown in a.

Scale bars, 10 um.

—-h

machine learning applications”-%11:20,

Next, a nearest-neighbor algorithm that
supports trajectory splitting (for example,
cell division) and merging (for example,
cell-to-cell fusion) tracked indivi-
dual cells over time. The automated
tracking matched 99.8% of the human
annotated object-over-frame connections
(1,942 connections), a value comparable to the performance of
previous studies on cell tracking! 121,

The overall accuracy of the individual computational steps
appeared to be high. However, considering >500 frames per
cell trajectory for our time-resolved datasets, we obtained
almost no error-free trajectories by this approach (Fig. 1e and
Supplementary Movie 2).

Cell trajectories

Detecting scarce events in long-term movies
Mitotic events are scarce in comparison to the much longer dura-
tion of interphase (Fig. 1e). To improve the sensitivity for mitotic-
stage annotation, we automatically selected mitotic events based
on a morphology class sequence motif of prophase-prometaphase.
This yielded a subgraph highly enriched for mitotic events
(Fig. 2a and Supplementary Movie 3; 81.5% of all mitotic
events were automatically extracted; 294 mitotic events in three
movies). This set of trajectories contained 2.1% misclassifications
per object (a posteriori compared with human annotation).
Untrained biological users may annotate the classifier train-
ing set less reliably. To test the sensitivity of the support vector
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machine toward annotation errors, we randomized the labels on
fractions of training objects and measured the overall classifi-
cation accuracy (Supplementary Fig. 2). Randomization of the
labels on 50% of the training objects reduced the overall annota-
tion accuracy only slightly below 90%. This demonstrates that
classification by support vector machine is relatively insensitive
to annotation errors.

Hidden Markov model for time-lapse imaging
Single object-based machine learning and classification does not
take the temporal context into account, but objects with ambiguous
morphologies invariably occur in a typical context of preceding and
following morphologies. This context could help derive the correct
annotation for the ambiguous object. This could be particularly
relevant for gradual morphology changes at stage transitions,
where single object-based classification is relatively inaccurate (for
example, interphase, prophase, interphase, interphase, prophase,
prometaphase; Fig. 2b and Supplementary Movie 3).

We reasoned that taking the history of a cell into account might
provide a means to correct for such noise at stage transitions, as
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well as confusion between closely related morphology classes.
We assumed that the true state of a cell at a given time point (the
mitotic stage in this assay) is not known, but that it correlates with
an observed state (the morphology class prediction probabilities).
We also assumed that the progression to the next state entirely
depends on a given present state. This fulfils the criteria for a
hidden Markov model, which can be used for error correction in
time-resolved data??.

We built a model with five components: (i) hidden states,
representing the true morphology classes (for example, mitotic
stages), (ii) observed states (the class prediction probability
vectors of the support vector machine), (iii) probabilities of
hidden state transitions, (iv) observation probabilities and
(iv) initial probabilities of hidden states. All elements of this
model were computationally derived from the data without addi-
tional user interaction. We defined the hidden states by the initial
class annotation, as described above (Fig. 1b). The support
vector machine yielded observed states as a vector of class
prediction probabilities for each time point. The hidden
state probabilities were initialized at the first time point by
the support vector machine predictions. Transition prob-
abilities between hidden states were calculated based on the
support vector machine prediction probabilities of all cellular
trajectories per experimental condition (Fig. 2¢,d), and the
observation probabilities between hidden and observed states
were estimated based on the confusion matrix of the support
vector machine. We derived the overall maximum likelihood
path for the progression through mitosis by the Viterbi algo-
rithm?? (Fig. 2e). This increased the overall per-object accu-
racy to 99.0%. Iterative learning of transition probabilities by
the expectation-maximization algorithm?42> did not improve
prediction accuracy (98.1% after five iterations). We suspected
that the confusion matrix overestimated observation probabili-
ties, as classes that are difficult to discriminate (prophase and
early anaphase) were overrepresented in the annotation data.
We therefore tested the performance of temporal error cor-
rection with lower error rates in the observation probabili-
ties (0.1% for all transitions) and found that this eliminated
noise at state transitions and more efficiently corrected single
frames of misclassified objects, yielding overall accuracy of
99.4% per object and 91% completely error-free trajectories
(100 trajectories; 4,000 objects; Fig. 2f, Supplementary Fig. 3
and Supplementary Movie 4).

We next tested whether incorporation of a priori biological
knowledge on state transitions increased the annotation accuracy.
Specifically, we constrained the state transition graph of three
consecutive classes to the forward direction and defined apop-
tosis as a terminal state (Supplementary Fig. 4a,b). The prob-
ability matrix for constrained state transitions improved the error
correction performance of the hidden Markov model to 99.7% per
object, yielding 94% completely error-free trajectory annotations
(100 trajectories; 4,000 objects; Supplementary Fig. 4c).

We expected temporal error correction by the hidden Markov
model to depend on good estimates of the predicted morphology
classes. We therefore investigated the robustness of temporal error
correction toward simulated classification noise. We randomized
the class prediction probability vectors of fractions of objects,
then trained the hidden Markov model on the noisy trajectories
and applied it to correct classification errors (Supplementary
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Fig. 5). Comparison with manually annotated data demonstrated
that the hidden Markov model-based error correction improved
the overall accuracy at all noise levels.

We also tested whether the temporal error correction was
sensitive to changes in the time-lapse interval by generat-
ing trajectories sampled to every second time point up to
every sixth time point (Supplementary Fig. 6). Comparison
with the manually annotated labels showed that the hidden
Markov model increased the overall annotation accuracy at all
sampling intervals.

Hidden Markov modeling provided a robust and efficient
means to eliminate misclassifications and noise at morpho-
logy state transitions. The combination of mitotic event selec-
tion and hidden Markov model error correction reduced the
per-object error rate about tenfold compared to single time
point-based classification.

Generic strategy for annotation of cellular dynamics

We next used our tools for simultaneous analysis of multiple
markers in the same cell, for example, to address temporal
coordination of mitotic processes. We defined cytoplasmic areas
based on their relative position to the chromatin marker, using
non-overlapping ‘region growing’ of the contours derived from
the chromatin channel (Supplementary Fig. 7a,b). Although
this may be less precise than segmenting in the secondary
channel, it proved to be robust over many different assays and
was insensitive to temporal dynamics (Figs. 3 and 4). We applied
tracking results of the primary channel to the secondary channel
and performed all subsequent analysis of temporal dynamics
independently for primary and secondary channels, as outlined
above (Supplementary Fig. 7c).

We first applied our methods to analyze movies from cells
expressing mEGFP-o.-tubulin to annotate mitotic spindle
assembly and disassembly (Fig. 3a and Supplementary Movie 5)
and movies from cells expressing GalT-EGFP to study mitotic
breakdown and reassembly of the Golgi apparatus (Fig. 3b
and Supplementary Movie 6). We trained classifiers for six
(o-tubulin) or five (GalT) distinct morphology classes. The
mean accuracy of object class predictions was 96.5% for mEGFP-
o-tubulin and 97.3% for GalT-EGFP (fivefold cross-validation,
computational versus visual scoring). This yielded 55% (ct-tubulin)
or 38% (GalT) completely error-free trajectories. By using
hidden Markov model error correction, the accuracy increased
to 89% completely error-free trajectories for o.-tubulin (Fig. 3d
and Supplementary Movie 7) and 90% for GalT (Fig. 3e and
Supplementary Movie 8; n = 100 for both assays; Fig. 3g,h).

To apply our methods to nonmitotic cellular dynamics, we
annotated the timing of S-phase progression. We imaged a HeLa
cell line stably expressing H2B-mCherry and EGFP-PCNA,
a marker for DNA replication foci, which visualizes a character-
istic pattern of morphology changes during S-phase progression
(Fig. 3¢ and Supplementary Movie 9). We trained classifiers
for six distinct PCNA morphology classes and established a
hidden Markov model for error correction. This yielded 98.2%
correctly annotated objects and 90% completely error-free
trajectories (100 trajectories containing 15,000 objects; Fig. 3f,i
and Supplementary Movie 10). The high performance in this
diverse set of assays demonstrated generic applicability of our
computational methods.
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Figure 3 | Automated annotation of mitotic spindle and Golgi dynamics, and replication factory

patterns during S-phase progression. (a) Live imaging of mitotic spindle dynamics of a cell expressing

H2B-mCherry (red) and mEGFP-o-tubulin (green) (20x objective; 4.6 min time lapse). Automated

hidden Markov model-corrected classification of spindle morphology, color labeled as indicated.

(b) Live imaging of mitotic Golgi dynamics in a cell line expressing H2B-mCherry (red) and GalT-EGFP

(green) (10x objective; 2.8 min time lapse). Colors indicate automated hidden Markov model-corrected

annotation of Golgi morphologies. (c) Live imaging of DNA replication factory dynamics in a cell line

expressing H2B-mCherry (red) and PCNA-EGFP (green) (10x objective; 5.9 min time-lapse). Colors

indicate automated hidden Markov model-corrected annotation of S-phase progression based on

PCNA morphology. Scale bars, 10 pm (a-c). (d) Automated annotation of a high-throughput imaging

dataset. One hundred randomly selected mitotic events were derived and in silico synchronized to

the prophase-prometaphase transition based on the H2B-mCherry annotation (Fig. 2). The secondary

channel annotation was calculated independently from the H2B-mCherry channel, as indicated in a.

(e) Automated annotation of Golgi dynamics, processed as in d. (f) Automated annotation of S-phase

progression. Cells were in silico synchronized to the G1-early S phase transition based on the EGFP-PCNA

classification. (g-i) Hidden Markov model-corrected annotations of H2B-mCherry morphologies for the

cells shown in d—f. Colors label classes as defined in Figure 1b.

Quantitative phenotyping and kinetic measurements

We designed our methods for the detection of timing phenotypes.
We therefore established perturbation conditions that are known
to delay or shorten particular stages of mitosis. First, we used the
microtubule-depolymerizing drug nocodazole, which arrests cells
in prometaphase by permanent activation of the spindle check-
point (Fig. 4a and Supplementary Movie 11). Our computational
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tools reliably detected this (96.2% com-
pletely error-free annotated trajectories,
154 trajectories; Fig. 4b).

Next, we depleted the essential spindle
checkpoint component Mad2 by RNAi,
which is known to accelerate the timing
from mitotic entry until anaphase onset
in HeLa cells by about twofold?® (Fig. 4a
and Supplementary Movie 12). We evalu-
ated the accuracy of automated timing
measurements, scoring the time from
prometaphase until anaphase onset based
on the chromatin marker (cells that
did not segregate chromosomes were
omitted). Automated measurements of
47.2 £ 20.0 min (mean * s.d.; n = 195)
in control cells did not significantly
differ from manual annotation of the
same dataset (48.5 + 18.0 min; two-sided
Mann-Whitney-Wilcoxon test, P = 0.12).
Automated timing measurements in Mad2
RNAI cells demonstrated mitotic acce-
leration (13.0 + 3.6 min), agreeing with
manual annotation (12.4 + 3.4 min; two-
sided Mann-Whitney-Wilcoxon test, P =
0.23). As expected from the known bio-
logical function of Mad2, the mitotic acce-
leration in Mad2 RNAi cells was mainly
due to a shortened metaphase stage (1.6 =
1.1 min in Mad2 RNAi cells; 36.5 £ 16.6
min in control; Fig. 4b).

Simultaneous measurements of morpho-
logical dynamics and the state of regu-
latory factors are a powerful approach
for mechanistic dissection of perturba-
tion phenotypes. Here we combined the
annotation of mitotic stages with kinetic
measurements of Securin degradation,
which is required for anaphase ini-
tiation?” (Fig.4a and Supplementary
Movies 11-13). In the normalized deg-
radation kinetic profiles (Fig. 4c), we
found that in control cells the Securin-
mEGFP degradation initiated briefly
before anaphase (Fig. 4b,c), consistent
with spindle checkpoint inactivation at
this stage. In nocodazole-arrested cells,
almost all Securin-mEGFP remained
stable during the measurement period of
138 min, consistent with an efficient and
permanent activation of the spindle check-
point. Degradation of Securin-mEGFP in

Mad2 RNAI cells initiated directly after mitotic entry, at a stage
where chromosomes were still in prometaphase configuration.
This indicates that the anaphase-promoting complex was acti-
vated before complete chromosome congression, as expected for
a compromised spindle checkpoint function. These experiments
demonstrate accurate timing phenotype annotation in RNAi-
and drug-perturbed cells.
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Figure 4 | Timing phenotypes and kinetic
measurements. (a) Mitotic progression assayed
by H2B-mCherry morphology and degradation
of Securin-mEGFP. Examples are shown for

Control Q)

an untreated control cell, a cell with Mad2 S
RNAi-inactivated spindle checkpoint, and a cell =
arrested in prometaphase by nocodazole (Noc.). 2
Time lapse, 2.7 min; every third frame is shown. g
Scale bar, 10 um. (b) Automated classification g
of mitotic stage progression as in Figure 2f for b
the three experimental conditions shown in a.
(c) Securin-mEGFP degradation kinetics for the
same cells shown in b. Normalization was per 8 [l Interphase
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We therefore designed a library of 283 small

interfering RNAs (siRNAs) targeting 93 candidate mitotic exit regu-
lator genes, including all known human genes with homology to bud-
ding yeast mitotic exit regulators and some additional genes known
to be involved in mitotic regulation (Supplementary Table 2). As

an assay for mitotic exit timing, we scored the timing from anaphase
onset, based on the chromatin marker H2B-mRFP, until postmitotic
nuclear envelope reassembly, based on the nuclear import substrate
IBB-EGFP (Fig. 5a and Supplementary Movie 14).

Figure 5 | RNAi screen for mitotic exit
regulators. (a) Live-cell imaging of a cell line
expressing H2B-mCherry (red) and IBB-EGFP
(green; also shown separately in the lower
images) to assay mitotic exit timing. The
timing from anaphase onset (magenta line)
until onset of nuclear accumulation of IBB-EGFP
(green line) was used to define mitotic exit

timing (arrow). Time is in min:s. (b) Mitotic
exit timing in an RNAi screen for 300 different
RNAi conditions. We recorded 108 movies of
different siRNA transfections in parallel over
46 h, to collect the entire dataset in four

— Negative control experiments. Time lapse, 3.7 min. Each point in
— siCda20_1 the graph indicates the z score for one siRNA.
siCdc20_2

Each gene was targeted by three different siRNA

b [ Negative control C 004
4] HsiCDC20 .
: 2 75
2 g 757
] / 3
o [}
8 0] g 50
N c
8
-2 5
2 o5 -
_4
T T T T T T T 0
0 50 100 150 200 250 300 0

Rank order

@ siCdc20

752 | VOL.7 NO.9 | SEPTEMBER 2010 | NATURE METHODS

20 5 oligonucleotides. (c) Cumulative percentage of

Time (min) cells exiting mitosis after onset of chromosome

28:37 35:42 42:47 49:52

segregation (t = 0 min). The curves represent all
mitotic events from two experimental replica.
Cells were transfected in liquid phase with two
different siRNA targeting Cdc20 (siCdc20_1

and siCdc20_2), or a non-targeting oligo for
control, as indicated in the legend. (d) Confocal
time-lapse imaging of a cell stably expressing
H2B-mCherry and mEGFP-o-tubulin. Time is in
min:s; maximum intensity projection of five z
dimension slices. (e) Confocal imaging as in d
for a Cdc20 RNA:i cell. Scale bars, 10 um.
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For solid-state transfection of siRNAs into HeLa cells, we used a
high-density transfection array with 300 spots of different siRNA
transfection solutions printed to the glass surface of a chambered
coverslip’. We seeded the cells onto this array and 20 h later
started parallel imaging of 108 movies per experiment, for a total
duration of 46 h and with 3.7 min time resolution. We automati-
cally annotated the mean mitotic exit timing per experimental
condition within the 1.6 terabyte data containing 646,754 images
and 16,314 mitotic events. Only one siRNA delayed mitotic exit
above a z-score threshold of 3.0 (Fig. 5b and Supplementary
Fig. 8a; 6.8 = 2.0 min mean = s.d.; n = 50 mitotic events). This
oligo depleted the anaphase-promoting complex co-activator
Cdc20, as validated by western blotting (Supplementary
Fig. 8b). We confirmed the specificity of the phenotype in two
additional replicas with standard liquid-phase transfection and
with an additional siRNA (Fig. 5¢).

To test whether Cdc20 was required for other cellular reor-
ganization processes during mitotic exit, we assayed chromosome
decondensation and mitotic spindle disassembly. High resolution
confocal time-lapse imaging of cells expressing both H2B-mCherry
and mEGFP-o-tubulin (Fig. 5d,e and Supplementary Movies 15
and 16) showed that 100% of control cells (30 cells tested) started
chromosome decondensation within 14 min after chromosome
segregation, whereas only 54% (36 cells tested) did so after Cdc20
depletion. Thirty-one percent (36 cells tested) of Cdc20-depleted
cells started kinetochore fiber spindle disassembly 7 min after ana-
phase onset, in contrast to 87% (30 cells tested) in control cells.
These data suggest a requirement of Cdc20 for various cellular
processes leading to postmitotic reassembly of interphase cells.
This is unexpected given that Cdc20 has so far been thought to act
mainly at pre-anaphase stages of mitosis and it has not been noticed
in previous phenotypic analysis of Cdc20 RNAi cells?*.

DISCUSSION

Building on existing machine learning methodologies, the design
of a generic workflow for annotation of morphological dynam-
ics faced two main challenges. First, the classification noise at
continuous morphology stage transitions impairs coherent tra-
jectory annotation. Second, some biologically distinct classes
appear morphologically similar, which leads to high classification
confusion. By hidden Markov modeling, our methods efficiently
correct both types of errors based on the temporal context. The
hidden Markov models are learned individually for each experi-
mental condition, without any human supervision. This allows
the software to automatically adapt the error correction scheme
to phenotypic deviations.

Biological a priori knowledge to suppress state transitions that
are assumed to be impossible can also be used to improve anno-
tation accuracy'>!2 but such explicit error correction schemes
cannot be applied to new markers or assay systems without adap-
tation, and they may not apply to phenotypes with potentially
altered stage progression. We found that the gain in accuracy by
biological a priori constraints on the temporal progression was
only minor. Our hidden Markov implementation modeled time
series analysis in a high dimensional feature space with an intrin-
sic class-discriminant dimensionality reduction. Unlike principle
component analysis'?3%, our method preserves context-specific
structures. This may explain the large gain in accuracy compared
to the previous implementations (Supplementary Tables 3 and 4).
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Compared to previously described models'!2, our model is the

only one that can handle arbitrary relationships between pheno-
typic cell classes, providing a powerful and generic solution for
time-resolved cellular phenotyping.

We demonstrated that our analysis methods can be used for
a broad range of biological assays. We are not aware of any con-
straints that would preclude the use of our methods in other bio-
logical contexts, for example, apoptosis or cellular differentiation.
However, the texture and shape features implemented in our soft-
ware do not enable assays relying on absolute object counts, for
example, in centrosome duplication assays. Also, assays scoring
rapid intracellular dynamics would require integration of motion
feature extraction methods.

Supervised machine learning, as in this study, requires user-
defined morphology classes. It is therefore not possible to detect
aberrant phenotypic morphologies that do not occur in the con-
trol conditions used for annotating the classifier training set. This
limitation may be overcome in future studies by implementing
unsupervised machine learning methods for the analysis of image
time series.

We integrated our methods into the platform-independent
software package CellCognition, with graphical user interface
and supporting high-throughput batch processing on computer
clusters. CellCognition is published as open source software
(current version 1.0.7; Supplementary Software), along with
high-quality reference image data at http://www.cellcognition.
org/. With the increased availability of live-cell screening micro-
scopes, we anticipate that time-resolved imaging assays will soon
dominate a considerable fraction of high content screening and
systems biology applications.

METHODS
Methods and any associated references are available in the online
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS

Cell culture, RNAi and cell transfection arrays, and western
blotting. HeLa ‘Kyoto’ cells were cultured in DMEM (Gibco) sup-
plemented with 10% FCS (PAA Laboratories) and 1% penicillin-
streptomycin (Invitrogen) and grown on LabTek chambered
coverslips (Nunc) for live microscopy. All experiments were
performed with monoclonal cell lines stably expressing combi-
nations of the fluorescent markers as indicated throughout the
manuscript. Live imaging was in DMEM containing 10% FCS
and 1% penicillin-streptomycin, but without phenol red and ribo-
flavin to reduce autofluorescence of the medium. Cell transfection
arrays for live-cell RNAi screening were produced and used as
described previously”3!. All other RNAi interference experiments
were performed using single RNAi duplexes (Qiagen) that were
liquid phase-transfected with either Oligofectamine (Invitrogen)
or HiPerfect (Qiagen) as the transfection reagent according to the
manufacturers’ protocols. Final siRNA concentrations were 50 nM
for Oligofectamine or 10 nM for HiPerfect. Cdc20 siRNA valida-
tion oligos were obtained from Qiagen with the following target
sequences: 5-AACCTTGTGGATTGGAGTTCT-3" (Cdc20_1),
5’-CACCACCATGATGTTCGGGTA-3" (Cdc20_2). Total HeLa
cell lysates for SDS-PAGE analysis were prepared according to
standard procedures. Rabbit anti-human Cdc20 (diluted 1:5,000)
was from Bethyl laboratories.

Fluorescent reporter plasmid constructs. For efficient generation
of cell lines stably expressing fluorescently tagged marker proteins,
genes derived from plasmids in refs. 32-36 were subcloned into
PIRES-puro2 and pIRES-neo3 vectors (Clontech) that allow expres-
sion of resistance genes and tagged proteins from a single transcript.
For details on the plasmids, see Supplementary Table 5.

Stably expressing cell lines. For generation of stably expressing
cell lines, HeLa Kyoto cells were first transiently transfected using
FuGENES6 (Roche) following the manufacturer’s instructions.
Cells were then seeded to clonal density and grown in culture
medium supplemented with 500 (g m1~! geneticin (Invitrogen)
and/or 0.5 g ml~! puromycin (Merck/Calbiochem) for 3 weeks.
Individual colonies of resistant cells were picked, expanded and
validated for homogeneous expression levels and correct subcel-
lular localization of fluorescent proteins. All cell lines used in this
study had a normal morphology and cell-cycle progression as
compared to the maternal line. For details on the stable cell lines,
see Supplementary Table 6.

Live microscopy. Automated microscopy with reflection-
based laser auto focus was performed on a Molecular Devices
ImageXpressMicro screening microscope equipped with a 10x
0.5 numerical aperture (NA) and 20x 0.8 NA S Fluor dry objec-
tives (Nikon) and recorded as two-dimensional time series. The
microscope was controlled by in-house-developed Metamorph
macros (PlateScan software package, available at http://www.
be.biol.ethz.ch/people/groups/gerlichd). Cells were maintained
in a microscope stage incubator at 37 °C in humidified atmos-
phere of 5% CO, throughout the entire experiment. We adjusted
illumination conditions such that cell death rate was below 5%
in untreated control cells!4. Confocal microscopy was performed
on a customized Zeiss LSM 510 Axiovert microscope using a 63x,
1.4 NA oil Plan-Apochromat objective (Zeiss). The microscope
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was equipped with piezo focus drives (piezosystemjena), custom-
designed filters (Chroma) and EMBL incubation chamber, pro-
viding a humidified atmosphere at 37 °C with 5% CO,,.

Image analysis. Cell nuclei were detected by local adaptive thres-
holding’, which is robust toward variable expression levels of the
fluorescent chromatin marker in individual cells and inhomogene-
ous illumination typical for widefield microscopy. To improve seg-
mentation accuracy, we implemented a split-and-merge approach.
First, we split objects containing directly adjacent nuclei, using
watershed transformation based on object contours. In some cases,
this incorrectly split single objects. Thus we implemented object
merging based on a priori definition of size and circularity crite-
rial®. Regions of interest for the secondary marker were derived
by region growing of the chromatin segmentation to a fixed size
but constrained by regions of neighboring cells. Depending on
the marker, we defined nuclear, cytoplasmic or total cellular areas.
This segmentation strategy turned out to be more precise than
direct segmentation in the secondary channel, as many second-
ary markers dramatically changed in intensity levels or pattern
throughout the time course of the experiment. Texture and shape
features!”>1® (Supplementary Table 1) were extracted from the
two channels and all regions individually. For secondary region
classification, only texture features were used because the shape
information only depended on the chromatin segmentation.

Samples for morphology classes were manually annotated on
the original images overlaid with the segmentation contours to
establish a training set for supervised classification. Support vector
classification with radial-based kernel and probability estimates®’
was then computed with libSVM. Classification performance was
calculated with fivefold cross-validation. Samples and feature plots
for all classifiers used in this study can be accessed online through
a web browser interface (see http://www.cellcognition.org/).

Tracking cells over time was achieved by a constrained near-
est-neighbor approach based on the Euclidian distance between
objects?l. As tracks might be lost because of segmentation errors
or migration of cells into the field of view, the tracking must be
able to create new tracks for all objects without incoming edges.
To detect cell division events, or potential cell-to-cell fusion
events, the tracking algorithm needed to support both splitting
and merging. This yielded a hierarchical directed graph of isolated
tracks for each cell over time. Tracking errors resulted mostly
from segmentation errors and lead to wrong edges between the
cell tracks. Secondary objects are tracked indirectly by the pri-
mary objects associated with them. Mitotic motifs were detected
in this graph structure by the transition from prophase to promet-
aphase. Subgraphs (mitotic trajectories) were extracted by con-
sidering a predefined number of frames preceding and following
this mitotic motif, resulting in synchronized mitotic trajectories
of equal length, as displayed in the figures.

Hidden Markov model and statistical analysis. A hidden Markov
model A is defined as A = (X, A, Y, B, n), in which X is the set of
hidden states, A is a matrix of transition probabilities from one
state to another, Y is the set of observable variables per state,
B is a matrix of observation probabilities storing the probability of
observation k being produced from state j (also termed emission
or observation probability), and = is a vector of probabilities of
the initial state (first time point) in the trajectory.
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The hidden states X are the true cellular stages expressed
by the class labels (eight classes for fluorescent histone H2B;
Fig. 1b). The hidden Markov model is learned by maximum
likelihood estimates from the aligned trajectories of estimated
prediction probabilities of the support vector machine, which
is a three-dimensional array over trajectories, time points and
classes. Transition probabilities A are learned from the predic-
tion probabilities along the trajectories on the underlying graph
structure. In a free model all transitions between morphology
classes were allowed (Fig. 2¢). In a constrained model some
transitions were suppressed based on biological a priori knowl-
edge (transition probabilities were set to 0 for edges missing in
the graph; Supplementary Fig. 6a). For the initial probabilities
7 the prediction probabilities of all trajectories at the first time
point are considered. The observables Y are the class labels.
The observation probabilities were either set to an error rate of
0.1%, or derived from the confusion matrix of support vector
machine training.

Using the Viterbi algorithm, each trajectory was corrected
based on its sequence of support vector machine probability esti-
mates and the trained hidden Markov model for a given experi-
mental condition (decode problem). This correction scheme
was calculated individually for each marker and experimental
perturbation condition.

To detect the onset of nuclear envelope breakdown and nuclear
envelope reformation the time series of IBB-EGFP, intensity
ratios of individual cells were analyzed. We computed the ratio
by a shrunken area of the chromatin object and a ring around.
The onset was defined as the time point where the ratio was
1.5-fold increased above the ratio at the time point of chromo-
some segregation.

For data normalization in Figure 5b we computed the z scores
of mitotic exit timing for all siRNA conditions (mean over all
values of one condition). The z score was computed by the mean
of negative controls and the s.d. of the entire dataset.

Implementation and performance. The basic image process-
ing was implemented in C++ using VIGRA (vision with generic
algorithm) (http://hci.iwr.uni-heidelberg.de/vigra/) and in
house-developed extensions. The C++ code was then wrapped
for Python, which is a programming language particularly well-
suited for handling complex data structures and integration of
external modules. Statistical analysis and plots were performed
with the R project (http://www.r-project.org/). The entire

NATURE METHODS

software package is platform-independent, and was compiled
for Mac OS X and Windows environments.

Computation of each movie required 4-20 s per image and proc-
essor node, consuming 500-1,500 megabytes of RAM, depending
of the number of frames and objects per frame. As an example,
a single movie of Figure 2 with 206 frames and ~37,000 objects
required a total processing time of 34 min on a single processor
node. For high-throughput analysis, we implemented distributed
computing on a farm of desktop computers (four MacPro 2.2GHz,
28 cores total).

Software and data resources. CecogAnalyzer is a platform-
independent graphical user interface, which covers the entire
workflow presented in this paper. The software is publicly avail-
able in source and binary versions and was tested on MacOS X
Leopard/SnowLeopard and Windows XP/7. We use a subversion
repository for concurrent software development by remote con-
tributors and tracking of software changes. Our website is based
on the project management tool TRAC (http://trac.edgewall.
org/), which allows coordination of this open-source project by
milestones, tickets, wiki pages and browsing of code changes.

The software, a subset of raw images presented here, the classi-
fiers and parameters used for generating the figures are available
online at http://www.cellcognition.org/. The classifiers datasets
consisting of annotated samples and extracted features are inter-
actively visualized by Adobe Flex and can be browsed online at
http://flex.cellcognition.org/.

The MetaMorph journals developed for fast and robust acquisition
of the time-lapse experiments presented here are available on our
group website: http://www.bc.biol.ethz.ch/people/groups/gerlichd.
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