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Fluorescence time-lapse imaging has become a powerful tool 
to investigate complex dynamic processes such as cell division 
or intracellular trafficking. Automated microscopes generate 
time-resolved imaging data at high throughput, yet tools for 
quantification of large-scale movie data are largely missing. 
Here we present CellCognition, a computational framework 
to annotate complex cellular dynamics. We developed a 
machine-learning method that combines state-of-the-art 
classification with hidden Markov modeling for annotation of 
the progression through morphologically distinct biological 
states. Incorporation of time information into the annotation 
scheme was essential to suppress classification noise at state 
transitions and confusion between different functional states 
with similar morphology. We demonstrate generic applicability 
in different assays and perturbation conditions, including a 
candidate-based RNA interference screen for regulators of 
mitotic exit in human cells. CellCognition is published as open 
source software, enabling live-cell imaging–based screening 
with assays that directly score cellular dynamics.

The availability of RNA interference (RNAi) technology for high-
throughput gene inactivation experiments, fluorescent protein 
labeling and automated microscopy has opened a new era of 
screening possibilities in higher eukaryotes1. Indeed, imaging-
based RNAi and chemical-compound screening has become 
an important discovery tool for the identification of new gene 
function, for example, in the regulation of DNA damage and 
repair2, endocytosis3 and mitosis4–6.

Imaging-based screens typically assay altered incidence of 
cells with specific features in a population of fixed, fluorescently 
labeled cells. The development of computational methods, such as 
machine learning for supervised classification of cellular morpho
logies, were key for the automated annotation of high-throughput 
imaging data and the establishment of microscopy-based screen-
ing as a routine technology in a wide research community7–12.

Many biological processes depend on stochastic events and 
occur in an unsynchronized and transient manner, which limits 

the applicability of single–time-point assays. Complex dynamic pro
cesses such as cell division or intracellular trafficking demand time-
resolved, live-cell imaging13. Automated microscopes now enable 
high-throughput live-cell imaging with excellent spatiotemporal 
resolution1,7,14. Computational analysis of such data is challenging 
and existing machine learning and classification approaches do not 
provide sufficient accuracy to correctly annotate cellular trajecto-
ries with multiple time points. Published live-cell imaging–based 
RNAi screens have scored phenotypes either exclusively in cell popu
lations6,7 or relied on visual evaluation of single-cell dynamics4. 
However, cell population analysis cannot be used to detect stochastic  
and transient phenotypes, and visual interpretation of morpho
logical dynamics is very time-consuming and often unreliable.

To improve the classification accuracy of machine learning 
methods, the temporal context can be taken into account. For 
example, if the biological process underlying an assay is well 
known, a biological model can be explicitly defined in an error 
correction scheme that suppresses illegitimate stage transitions. 
This has been applied to study the pattern of mitotic chromatin 
morphology changes11,12. However, temporal error correc-
tion based on biological a priori models limits the detection of 
unexpected phenotypic variations, and the adaptation to different 
biological questions requires re-implementation of the underlying 
models by the user for each new assay.

Here we present CellCognition, an integrated computational 
strategy that combines machine learning methods for supervised 
classification and hidden Markov modeling to measure morpho
logical dynamics in live-cell microscopic movies. Our error-
correction method does not require a priori definition of the temporal 
progression, which enables its application to a wide range of assays 
and phenotypic variations. We demonstrate efficiency and sensitivity 
of the methodology in various assays and perturbation conditions.

RESULTS
High-throughput imaging of cellular dynamics
To visualize morphological dynamics of various cellular struc-
tures, we generated a collection of human HeLa reporter cell 
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lines stably expressing different combi-
nations of fluorescent markers. All cell 
lines expressed a red chromatin marker 
(core histone 2B fused to monomeric 
(m)Cherry; H2B-mCherry). In this 
background, we expressed markers for 
microtubules (monomeric enhanced GFP 
(mEGFP)–α-tubulin), the Golgi apparatus 
(galactosyl transferase (GalT)–EGFP), or 
DNA replication factories (proliferating 
cell nuclear antigen (PCNA)–mEGFP). 
These diverse secondary markers (Fig. 1a) are a well-suited test 
case for the implementation of a generic annotation method. With 
these cells, we performed multilocation time-lapse imaging on an 
automated widefield epifluorescence microscope14. We typically 
recorded 96 movies in parallel, with a temporal resolution less 
than 5 min over a total duration of 24 h, generating datasets of 
about 100,000 images, or 200 gigabytes, per day and microscope. 
The analysis of such a single experiment requires annotation of up 
to 25 million cellular morphologies derived from about 260,000 
objects per movie with a 10× microscope objective.

Machine learning and classification of morphologies
Timing measurements in live-cell imaging data are often based 
on the progression through distinct morphologies that relate to 
specific biological states. An excellent example for this is mitosis, 
for which the chromatin morphology can be used to annotate the 
canonical mitotic stages (Fig. 1b and Supplementary Movie 1). 
We used this classic assay as a test case to measure timing events 
at the single cell level.

We first implemented a canonical strategy for automated 
annotation of morphological classes7–9,15, based on object 
detection, multivariate feature extraction and supervised 
machine learning (Fig. 1c). We used local adaptive threshold-
ing7, followed by a watershed split-and-merge segmentation 
error correction16 to detect individual cells at an accuracy of 
95.7% (1,876 objects; 2.6% oversegmented (falsely cut objects) 
and 1.7% undersegmented (falsely merged objects)). For 
each object, we then calculated 186 quantitative features17,18 
(Supplementary Table 1 and Supplementary Fig. 1) describing 
texture and shape. Next, we trained a support vector machine 
classifier19 for the discrimination of eight different object 
morphologies (Fig. 1b; interphase, six different mitotic stages 
and apoptosis). We defined these classes by manual annotation 
of 28–195 example objects. The agreement between human and 
computer annotation was 94.6% (mean of all classes; fivefold 
cross-validation), ranging between 75.0% for the early anaphase 
class and 99.0% for interphase class (Fig. 1d). This performance 
was similar to that of several previously reported supervised 
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Figure 1 | Supervised machine learning and 
classification of morphologies. (a) Confocal  
images of live HeLa cells stably expressing  
a chromatin marker (H2B-mCherry), together 
with GalT-EGFP to visualize the Golgi apparatus, 
with mEGFP–α-tubulin or with the replication 
factory marker EGFP-PCNA. The images show 
maximum intensity projections of five  
z dimension sections. (b) Live imaging of  
HeLa cells expressing H2B-mCherry at 
different cell cycle stages or apoptosis 
(two-dimensional time series imaged with 
widefield epifluorescence 20× dry objective). 
Colors indicate H2B-mCherry morphology 
classifications used in subsequent figures.  
(c) Object detection (contours) and classification  
(colors) of cellular morphologies over time 
corresponding to mitotic stages defined in b. 
Scale bars, 10 μm (a–c). (d) Confusion matrix 
displays the matching of human annotations 
versus annotation of support vector machines 
with radial basis functions. (e) Automated 
annotation of cell trajectories over time as 
illustrated in c. Displayed are 80 randomly 
selected trajectories (rows) over 40 time frames 
(columns); time lapse, 4.6 min. Colors refer to 
morphology classes as defined in b. Tick marks 
indicate sampled time points. Mitotic events 
were rare, and the trajectories contain many 
single frames of mitotic annotations, likely 
owing to classification errors.
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machine learning applications7,9,11,20. 
Next, a nearest-neighbor algorithm that 
supports trajectory splitting (for example,  
cell division) and merging (for example,  
cell-to-cell fusion) tracked indivi
dual cells over time. The automated 
tracking matched 99.8% of the human 
annotated object-over-frame connections 
(1,942 connections), a value comparable to the performance of  
previous studies on cell tracking11,21.

The overall accuracy of the individual computational steps 
appeared to be high. However, considering >500 frames per 
cell trajectory for our time-resolved datasets, we obtained 
almost no error-free trajectories by this approach (Fig. 1e and 
Supplementary Movie 2).

Detecting scarce events in long-term movies
Mitotic events are scarce in comparison to the much longer dura-
tion of interphase (Fig. 1e). To improve the sensitivity for mitotic-
stage annotation, we automatically selected mitotic events based 
on a morphology class sequence motif of prophase-prometaphase.  
This yielded a subgraph highly enriched for mitotic events  
(Fig. 2a and Supplementary Movie 3; 81.5% of all mitotic 
events were automatically extracted; 294 mitotic events in three  
movies). This set of trajectories contained 2.1% misclassifications 
per object (a posteriori compared with human annotation).

Untrained biological users may annotate the classifier train-
ing set less reliably. To test the sensitivity of the support vector 

machine toward annotation errors, we randomized the labels on 
fractions of training objects and measured the overall classifi-
cation accuracy (Supplementary Fig. 2). Randomization of the 
labels on 50% of the training objects reduced the overall annota-
tion accuracy only slightly below 90%. This demonstrates that 
classification by support vector machine is relatively insensitive 
to annotation errors.

Hidden Markov model for time-lapse imaging
Single object–based machine learning and classification does not 
take the temporal context into account, but objects with ambiguous 
morphologies invariably occur in a typical context of preceding and 
following morphologies. This context could help derive the correct 
annotation for the ambiguous object. This could be particularly 
relevant for gradual morphology changes at stage transitions, 
where single object–based classification is relatively inaccurate (for 
example, interphase, prophase, interphase, interphase, prophase, 
prometaphase; Fig. 2b and Supplementary Movie 3).

We reasoned that taking the history of a cell into account might 
provide a means to correct for such noise at stage transitions, as 
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Figure 2 | Hidden Markov modeling of 
progression through morphology stages.  
(a) Automated extraction of mitotic events. 
Cells were synchronized in silico to the prophase 
to prometaphase transition. The plot displays  
a random selection of 100 mitotic events  
(from a total of 172 mitotic events from  
eight movies; time lapse, 4.6 min). For plotted 
data in the boxed region, contour overlays on 
image data are shown on the right. Predicted 
morphology classes were color-coded as in 
Figure 1b. Asterisks indicate classification 
errors. (b) Images of a single cell and  
corresponding trajectory of class labels. 
Asterisks denote classification errors.  
(c) Graph for all possible transitions between 
classes. Node 0 is the start node; all other 
nodes are color-coded as defined in Figure 1b. 
(d) Learned class transition probabilities based 
on the trajectories shown in a. Normalization of 
probabilities was per node. (e) Trellis diagram 
showing all class prediction estimates for the 
cell shown in b. Vertical columns correspond to 
single time points, aligned to the images in b. 
Rows correspond to morphology classes, labeled 
as defined in Figure 1b. Probability estimates 
derived from the support vector machine are 
coded by size. The Viterbi algorithm was used to 
decode the overall most likely sequence (thick 
black line). Thin black lines indicate the most 
likely preceding state of a label at each given 
time point. (f) Error correction as in e was 
performed for all trajectories shown in a.  
Scale bars, 10 μm.
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well as confusion between closely related morphology classes. 
We assumed that the true state of a cell at a given time point (the 
mitotic stage in this assay) is not known, but that it correlates with 
an observed state (the morphology class prediction probabilities). 
We also assumed that the progression to the next state entirely 
depends on a given present state. This fulfils the criteria for a 
hidden Markov model, which can be used for error correction in 
time-resolved data22.

We built a model with five components: (i) hidden states, 
representing the true morphology classes (for example, mitotic 
stages), (ii) observed states (the class prediction probability 
vectors of the support vector machine), (iii) probabilities of 
hidden state transitions, (iv) observation probabilities and  
(iv) initial probabilities of hidden states. All elements of this 
model were computationally derived from the data without addi-
tional user interaction. We defined the hidden states by the initial  
class annotation, as described above (Fig. 1b). The support 
vector machine yielded observed states as a vector of class 
prediction probabilities for each time point. The hidden 
state probabilities were initialized at the first time point by 
the support vector machine predictions. Transition prob-
abilities between hidden states were calculated based on the 
support vector machine prediction probabilities of all cellular 
trajectories per experimental condition (Fig. 2c,d), and the 
observation probabilities between hidden and observed states 
were estimated based on the confusion matrix of the support 
vector machine. We derived the overall maximum likelihood 
path for the progression through mitosis by the Viterbi algo-
rithm23 (Fig. 2e). This increased the overall per-object accu-
racy to 99.0%. Iterative learning of transition probabilities by 
the expectation-maximization algorithm24,25 did not improve 
prediction accuracy (98.1% after five iterations). We suspected 
that the confusion matrix overestimated observation probabili-
ties, as classes that are difficult to discriminate (prophase and 
early anaphase) were overrepresented in the annotation data. 
We therefore tested the performance of temporal error cor-
rection with lower error rates in the observation probabili-
ties (0.1% for all transitions) and found that this eliminated 
noise at state transitions and more efficiently corrected single 
frames of misclassified objects, yielding overall accuracy of 
99.4% per object and 91% completely error-free trajectories 
(100 trajectories; 4,000 objects; Fig. 2f, Supplementary Fig. 3 
and Supplementary Movie 4).

We next tested whether incorporation of a priori biological 
knowledge on state transitions increased the annotation accuracy. 
Specifically, we constrained the state transition graph of three 
consecutive classes to the forward direction and defined apop-
tosis as a terminal state (Supplementary Fig. 4a,b). The prob-
ability matrix for constrained state transitions improved the error 
correction performance of the hidden Markov model to 99.7% per 
object, yielding 94% completely error-free trajectory annotations 
(100 trajectories; 4,000 objects; Supplementary Fig. 4c).

We expected temporal error correction by the hidden Markov 
model to depend on good estimates of the predicted morphology 
classes. We therefore investigated the robustness of temporal error 
correction toward simulated classification noise. We randomized 
the class prediction probability vectors of fractions of objects, 
then trained the hidden Markov model on the noisy trajectories 
and applied it to correct classification errors (Supplementary 

Fig. 5). Comparison with manually annotated data demonstrated 
that the hidden Markov model–based error correction improved 
the overall accuracy at all noise levels.

We also tested whether the temporal error correction was 
sensitive to changes in the time-lapse interval by generat-
ing trajectories sampled to every second time point up to 
every sixth time point (Supplementary Fig. 6). Comparison 
with the manually annotated labels showed that the hidden 
Markov model increased the overall annotation accuracy at all  
sampling intervals.

Hidden Markov modeling provided a robust and efficient 
means to eliminate misclassifications and noise at morpho
logy state transitions. The combination of mitotic event selec-
tion and hidden Markov model error correction reduced the 
per-object error rate about tenfold compared to single time 
point–based classification.

Generic strategy for annotation of cellular dynamics
We next used our tools for simultaneous analysis of multiple 
markers in the same cell, for example, to address temporal 
coordination of mitotic processes. We defined cytoplasmic areas 
based on their relative position to the chromatin marker, using 
non-overlapping ‘region growing’ of the contours derived from 
the chromatin channel (Supplementary Fig. 7a,b). Although 
this may be less precise than segmenting in the secondary 
channel, it proved to be robust over many different assays and 
was insensitive to temporal dynamics (Figs. 3 and 4). We applied 
tracking results of the primary channel to the secondary channel 
and performed all subsequent analysis of temporal dynamics 
independently for primary and secondary channels, as outlined 
above (Supplementary Fig. 7c).

We first applied our methods to analyze movies from cells 
expressing mEGFP–α-tubulin to annotate mitotic spindle 
assembly and disassembly (Fig. 3a and Supplementary Movie 5) 
and movies from cells expressing GalT-EGFP to study mitotic 
breakdown and reassembly of the Golgi apparatus (Fig. 3b 
and Supplementary Movie 6). We trained classifiers for six  
(α-tubulin) or five (GalT) distinct morphology classes. The 
mean accuracy of object class predictions was 96.5% for mEGFP– 
α-tubulin and 97.3% for GalT-EGFP (fivefold cross-validation, 
computational versus visual scoring). This yielded 55% (α-tubulin)  
or 38% (GalT) completely error-free trajectories. By using  
hidden Markov model error correction, the accuracy increased 
to 89% completely error-free trajectories for α-tubulin (Fig. 3d 
and Supplementary Movie 7) and 90% for GalT (Fig. 3e and 
Supplementary Movie 8; n = 100 for both assays; Fig. 3g,h).

To apply our methods to nonmitotic cellular dynamics, we 
annotated the timing of S-phase progression. We imaged a HeLa 
cell line stably expressing H2B-mCherry and EGFP-PCNA,  
a marker for DNA replication foci, which visualizes a character-
istic pattern of morphology changes during S-phase progression 
(Fig. 3c and Supplementary Movie 9). We trained classifiers 
for six distinct PCNA morphology classes and established a 
hidden Markov model for error correction. This yielded 98.2%  
correctly annotated objects and 90% completely error-free  
trajectories (100 trajectories containing 15,000 objects; Fig. 3f,i 
and Supplementary Movie 10). The high performance in this 
diverse set of assays demonstrated generic applicability of our 
computational methods.
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Quantitative phenotyping and kinetic measurements
We designed our methods for the detection of timing phenotypes. 
We therefore established perturbation conditions that are known 
to delay or shorten particular stages of mitosis. First, we used the 
microtubule-depolymerizing drug nocodazole, which arrests cells 
in prometaphase by permanent activation of the spindle check-
point (Fig. 4a and Supplementary Movie 11). Our computational 

tools reliably detected this (96.2% com-
pletely error-free annotated trajectories, 
154 trajectories; Fig. 4b).

Next, we depleted the essential spindle 
checkpoint component Mad2 by RNAi, 
which is known to accelerate the timing 
from mitotic entry until anaphase onset 
in HeLa cells by about twofold26 (Fig. 4a  
and Supplementary Movie 12). We evalu
ated the accuracy of automated timing 
measurements, scoring the time from  
prometaphase until anaphase onset based 
on the chromatin marker (cells that 
did not segregate chromosomes were  
omitted). Automated measurements of 
47.2 ± 20.0 min (mean ± s.d.; n = 195) 
in control cells did not significantly  
differ from manual annotation of the 
same dataset (48.5 ± 18.0 min; two-sided 
Mann-Whitney-Wilcoxon test, P = 0.12). 
Automated timing measurements in Mad2 
RNAi cells demonstrated mitotic acce
leration (13.0 ± 3.6 min), agreeing with  
manual annotation (12.4 ± 3.4 min; two-
sided Mann-Whitney-Wilcoxon test, P = 
0.23). As expected from the known bio-
logical function of Mad2, the mitotic acce
leration in Mad2 RNAi cells was mainly 
due to a shortened metaphase stage (1.6 ±  
1.1 min in Mad2 RNAi cells; 36.5 ± 16.6 
min in control; Fig. 4b).

Simultaneous measurements of morpho
logical dynamics and the state of regu
latory factors are a powerful approach 
for mechanistic dissection of perturba-
tion phenotypes. Here we combined the 
annotation of mitotic stages with kinetic 
measurements of Securin degradation, 
which is required for anaphase ini-
tiation27 (Fig. 4a and Supplementary 
Movies 11–13). In the normalized deg-
radation kinetic profiles (Fig. 4c), we 
found that in control cells the Securin-
mEGFP degradation initiated briefly 
before anaphase (Fig. 4b,c), consistent 
with spindle checkpoint inactivation at 
this stage. In nocodazole-arrested cells, 
almost all Securin-mEGFP remained 
stable during the measurement period of  
138 min, consistent with an efficient and 
permanent activation of the spindle check-
point. Degradation of Securin-mEGFP in 

Mad2 RNAi cells initiated directly after mitotic entry, at a stage 
where chromosomes were still in prometaphase configuration. 
This indicates that the anaphase-promoting complex was acti-
vated before complete chromosome congression, as expected for 
a compromised spindle checkpoint function. These experiments 
demonstrate accurate timing phenotype annotation in RNAi- 
and drug-perturbed cells.

Figure 3 | Automated annotation of mitotic spindle and Golgi dynamics, and replication factory 
patterns during S-phase progression. (a) Live imaging of mitotic spindle dynamics of a cell expressing 
H2B-mCherry (red) and mEGFP–α-tubulin (green) (20× objective; 4.6 min time lapse). Automated 
hidden Markov model–corrected classification of spindle morphology, color labeled as indicated.  
(b) Live imaging of mitotic Golgi dynamics in a cell line expressing H2B-mCherry (red) and GalT-EGFP 
(green) (10× objective; 2.8 min time lapse). Colors indicate automated hidden Markov model–corrected 
annotation of Golgi morphologies. (c) Live imaging of DNA replication factory dynamics in a cell line 
expressing H2B-mCherry (red) and PCNA-EGFP (green) (10× objective; 5.9 min time-lapse). Colors 
indicate automated hidden Markov model–corrected annotation of S-phase progression based on 
PCNA morphology. Scale bars, 10 μm (a–c). (d) Automated annotation of a high-throughput imaging 
dataset. One hundred randomly selected mitotic events were derived and in silico synchronized to 
the prophase-prometaphase transition based on the H2B-mCherry annotation (Fig. 2). The secondary 
channel annotation was calculated independently from the H2B-mCherry channel, as indicated in a. 
(e) Automated annotation of Golgi dynamics, processed as in d. (f) Automated annotation of S-phase 
progression. Cells were in silico synchronized to the G1–early S phase transition based on the EGFP-PCNA  
classification. (g–i) Hidden Markov model-corrected annotations of H2B-mCherry morphologies for the 
cells shown in d–f. Colors label classes as defined in Figure 1b.
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RNAi screen for mitotic exit regulators
To test the sensitivity and performance 
of our computational methods in a high-
throughput application, we performed 
a screen for regulators of mitotic exit. 
Specifically, we aimed to identify regula-
tors of post-anaphase stages of mitosis, for 
which RNAi phenotypes have not been 
reported so far. Mitotic exit control is well 
understood in budding yeast, yet it is unclear 
whether homologs of the yeast factors also 
control mitotic exit in higher eukaryotes28.  
We therefore designed a library of 283 small 
interfering RNAs (siRNAs) targeting 93 candidate mitotic exit regu-
lator genes, including all known human genes with homology to bud-
ding yeast mitotic exit regulators and some additional genes known 
to be involved in mitotic regulation (Supplementary Table 2). As 

an assay for mitotic exit timing, we scored the timing from anaphase 
onset, based on the chromatin marker H2B-mRFP, until postmitotic 
nuclear envelope reassembly, based on the nuclear import substrate 
IBB-EGFP (Fig. 5a and Supplementary Movie 14).
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an untreated control cell, a cell with Mad2 
RNAi–inactivated spindle checkpoint, and a cell 
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Scale bar, 10 μm. (b) Automated classification 
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Figure 5 | RNAi screen for mitotic exit 
regulators. (a) Live-cell imaging of a cell line 
expressing H2B-mCherry (red) and IBB-EGFP 
(green; also shown separately in the lower 
images) to assay mitotic exit timing. The 
timing from anaphase onset (magenta line) 
until onset of nuclear accumulation of IBB-EGFP 
(green line) was used to define mitotic exit 
timing (arrow). Time is in min:s. (b) Mitotic 
exit timing in an RNAi screen for 300 different 
RNAi conditions. We recorded 108 movies of 
different siRNA transfections in parallel over 
46 h, to collect the entire dataset in four 
experiments. Time lapse, 3.7 min. Each point in 
the graph indicates the z score for one siRNA. 
Each gene was targeted by three different siRNA 
oligonucleotides. (c) Cumulative percentage of 
cells exiting mitosis after onset of chromosome 
segregation (t = 0 min). The curves represent all 
mitotic events from two experimental replica. 
Cells were transfected in liquid phase with two 
different siRNA targeting Cdc20 (siCdc20_1 
and siCdc20_2), or a non-targeting oligo for 
control, as indicated in the legend. (d) Confocal 
time-lapse imaging of a cell stably expressing 
H2B-mCherry and mEGFP–α-tubulin. Time is in 
min:s; maximum intensity projection of five z 
dimension slices. (e) Confocal imaging as in d 
for a Cdc20 RNAi cell. Scale bars, 10 μm.
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For solid-state transfection of siRNAs into HeLa cells, we used a 
high-density transfection array with 300 spots of different siRNA 
transfection solutions printed to the glass surface of a chambered 
coverslip7. We seeded the cells onto this array and 20 h later 
started parallel imaging of 108 movies per experiment, for a total 
duration of 46 h and with 3.7 min time resolution. We automati-
cally annotated the mean mitotic exit timing per experimental 
condition within the 1.6 terabyte data containing 646,754 images 
and 16,314 mitotic events. Only one siRNA delayed mitotic exit 
above a z-score threshold of 3.0 (Fig. 5b and Supplementary  
Fig. 8a; 6.8 ± 2.0 min mean ± s.d.; n = 50 mitotic events). This 
oligo depleted the anaphase-promoting complex co-activator  
Cdc20, as validated by western blotting (Supplementary  
Fig. 8b). We confirmed the specificity of the phenotype in two 
additional replicas with standard liquid-phase transfection and 
with an additional siRNA (Fig. 5c).

To test whether Cdc20 was required for other cellular reor-
ganization processes during mitotic exit, we assayed chromosome 
decondensation and mitotic spindle disassembly. High resolution 
confocal time-lapse imaging of cells expressing both H2B-mCherry 
and mEGFP–α-tubulin (Fig. 5d,e and Supplementary Movies 15 
and 16) showed that 100% of control cells (30 cells tested) started 
chromosome decondensation within 14 min after chromosome 
segregation, whereas only 54% (36 cells tested) did so after Cdc20 
depletion. Thirty-one percent (36 cells tested) of Cdc20-depleted 
cells started kinetochore fiber spindle disassembly 7 min after ana-
phase onset, in contrast to 87% (30 cells tested) in control cells. 
These data suggest a requirement of Cdc20 for various cellular 
processes leading to postmitotic reassembly of interphase cells. 
This is unexpected given that Cdc20 has so far been thought to act 
mainly at pre-anaphase stages of mitosis and it has not been noticed 
in previous phenotypic analysis of Cdc20 RNAi cells29.

DISCUSSION
Building on existing machine learning methodologies, the design 
of a generic workflow for annotation of morphological dynam-
ics faced two main challenges. First, the classification noise at 
continuous morphology stage transitions impairs coherent tra-
jectory annotation. Second, some biologically distinct classes 
appear morphologically similar, which leads to high classification 
confusion. By hidden Markov modeling, our methods efficiently 
correct both types of errors based on the temporal context. The 
hidden Markov models are learned individually for each experi-
mental condition, without any human supervision. This allows 
the software to automatically adapt the error correction scheme 
to phenotypic deviations.

Biological a priori knowledge to suppress state transitions that 
are assumed to be impossible can also be used to improve anno-
tation accuracy11,12 but such explicit error correction schemes 
cannot be applied to new markers or assay systems without adap-
tation, and they may not apply to phenotypes with potentially 
altered stage progression. We found that the gain in accuracy by 
biological a priori constraints on the temporal progression was 
only minor. Our hidden Markov implementation modeled time 
series analysis in a high dimensional feature space with an intrin-
sic class-discriminant dimensionality reduction. Unlike principle 
component analysis12,30, our method preserves context-specific 
structures. This may explain the large gain in accuracy compared 
to the previous implementations (Supplementary Tables 3 and 4).  

Compared to previously described models11,12, our model is the 
only one that can handle arbitrary relationships between pheno-
typic cell classes, providing a powerful and generic solution for 
time-resolved cellular phenotyping.

We demonstrated that our analysis methods can be used for 
a broad range of biological assays. We are not aware of any con-
straints that would preclude the use of our methods in other bio-
logical contexts, for example, apoptosis or cellular differentiation. 
However, the texture and shape features implemented in our soft-
ware do not enable assays relying on absolute object counts, for 
example, in centrosome duplication assays. Also, assays scoring 
rapid intracellular dynamics would require integration of motion 
feature extraction methods.

Supervised machine learning, as in this study, requires user-
defined morphology classes. It is therefore not possible to detect 
aberrant phenotypic morphologies that do not occur in the con-
trol conditions used for annotating the classifier training set. This 
limitation may be overcome in future studies by implementing 
unsupervised machine learning methods for the analysis of image 
time series.

We integrated our methods into the platform-independent 
software package CellCognition, with graphical user interface 
and supporting high-throughput batch processing on computer 
clusters. CellCognition is published as open source software 
(current version 1.0.7; Supplementary Software), along with 
high-quality reference image data at http://www.cellcognition.
org/. With the increased availability of live-cell screening micro-
scopes, we anticipate that time-resolved imaging assays will soon 
dominate a considerable fraction of high content screening and 
systems biology applications.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
Cell culture, RNAi and cell transfection arrays, and western 
blotting. HeLa ‘Kyoto’ cells were cultured in DMEM (Gibco) sup-
plemented with 10% FCS (PAA Laboratories) and 1% penicillin-
streptomycin (Invitrogen) and grown on LabTek chambered 
coverslips (Nunc) for live microscopy. All experiments were 
performed with monoclonal cell lines stably expressing combi-
nations of the fluorescent markers as indicated throughout the 
manuscript. Live imaging was in DMEM containing 10% FCS 
and 1% penicillin-streptomycin, but without phenol red and ribo
flavin to reduce autofluorescence of the medium. Cell transfection 
arrays for live-cell RNAi screening were produced and used as 
described previously7,31. All other RNAi interference experiments 
were performed using single RNAi duplexes (Qiagen) that were 
liquid phase–transfected with either Oligofectamine (Invitrogen) 
or HiPerfect (Qiagen) as the transfection reagent according to the 
manufacturers’ protocols. Final siRNA concentrations were 50 nM  
for Oligofectamine or 10 nM for HiPerfect. Cdc20 siRNA valida-
tion oligos were obtained from Qiagen with the following target 
sequences: 5′-AACCTTGTGGATTGGAGTTCT-3′ (Cdc20_1), 
5′-CACCACCATGATGTTCGGGTA-3′ (Cdc20_2). Total HeLa 
cell lysates for SDS-PAGE analysis were prepared according to 
standard procedures. Rabbit anti-human Cdc20 (diluted 1:5,000) 
was from Bethyl laboratories.

Fluorescent reporter plasmid constructs. For efficient generation 
of cell lines stably expressing fluorescently tagged marker proteins, 
genes derived from plasmids in refs. 32–36 were subcloned into 
pIRES-puro2 and pIRES-neo3 vectors (Clontech) that allow expres-
sion of resistance genes and tagged proteins from a single transcript. 
For details on the plasmids, see Supplementary Table 5.

Stably expressing cell lines. For generation of stably expressing 
cell lines, HeLa Kyoto cells were first transiently transfected using 
FuGENE6 (Roche) following the manufacturer’s instructions. 
Cells were then seeded to clonal density and grown in culture 
medium supplemented with 500 μg ml−1 geneticin (Invitrogen) 
and/or 0.5 μg ml−1 puromycin (Merck/Calbiochem) for 3 weeks. 
Individual colonies of resistant cells were picked, expanded and 
validated for homogeneous expression levels and correct subcel-
lular localization of fluorescent proteins. All cell lines used in this 
study had a normal morphology and cell-cycle progression as 
compared to the maternal line. For details on the stable cell lines, 
see Supplementary Table 6.

Live microscopy. Automated microscopy with reflection-
based laser auto focus was performed on a Molecular Devices 
ImageXpressMicro screening microscope equipped with a 10× 
0.5 numerical aperture (NA) and 20× 0.8 NA S Fluor dry objec-
tives (Nikon) and recorded as two-dimensional time series. The 
microscope was controlled by in-house–developed Metamorph 
macros (PlateScan software package, available at http://www.
bc.biol.ethz.ch/people/groups/gerlichd). Cells were maintained 
in a microscope stage incubator at 37 °C in humidified atmos-
phere of 5% CO2 throughout the entire experiment. We adjusted 
illumination conditions such that cell death rate was below 5% 
in untreated control cells14. Confocal microscopy was performed 
on a customized Zeiss LSM 510 Axiovert microscope using a 63×, 
1.4 NA oil Plan-Apochromat objective (Zeiss). The microscope 

was equipped with piezo focus drives (piezosystemjena), custom-
designed filters (Chroma) and EMBL incubation chamber, pro-
viding a humidified atmosphere at 37 °C with 5% CO2.

Image analysis. Cell nuclei were detected by local adaptive thres
holding7, which is robust toward variable expression levels of the 
fluorescent chromatin marker in individual cells and inhomogene-
ous illumination typical for widefield microscopy. To improve seg-
mentation accuracy, we implemented a split-and-merge approach. 
First, we split objects containing directly adjacent nuclei, using 
watershed transformation based on object contours. In some cases, 
this incorrectly split single objects. Thus we implemented object 
merging based on a priori definition of size and circularity crite-
ria16. Regions of interest for the secondary marker were derived 
by region growing of the chromatin segmentation to a fixed size 
but constrained by regions of neighboring cells. Depending on 
the marker, we defined nuclear, cytoplasmic or total cellular areas. 
This segmentation strategy turned out to be more precise than 
direct segmentation in the secondary channel, as many second-
ary markers dramatically changed in intensity levels or pattern 
throughout the time course of the experiment. Texture and shape 
features17,18 (Supplementary Table 1) were extracted from the 
two channels and all regions individually. For secondary region 
classification, only texture features were used because the shape 
information only depended on the chromatin segmentation.

Samples for morphology classes were manually annotated on 
the original images overlaid with the segmentation contours to 
establish a training set for supervised classification. Support vector 
classification with radial-based kernel and probability estimates37 
was then computed with libSVM. Classification performance was 
calculated with fivefold cross-validation. Samples and feature plots 
for all classifiers used in this study can be accessed online through 
a web browser interface (see http://www.cellcognition.org/).

Tracking cells over time was achieved by a constrained near-
est-neighbor approach based on the Euclidian distance between 
objects21. As tracks might be lost because of segmentation errors 
or migration of cells into the field of view, the tracking must be 
able to create new tracks for all objects without incoming edges. 
To detect cell division events, or potential cell-to-cell fusion 
events, the tracking algorithm needed to support both splitting 
and merging. This yielded a hierarchical directed graph of isolated 
tracks for each cell over time. Tracking errors resulted mostly 
from segmentation errors and lead to wrong edges between the 
cell tracks. Secondary objects are tracked indirectly by the pri-
mary objects associated with them. Mitotic motifs were detected 
in this graph structure by the transition from prophase to promet-
aphase. Subgraphs (mitotic trajectories) were extracted by con-
sidering a predefined number of frames preceding and following 
this mitotic motif, resulting in synchronized mitotic trajectories 
of equal length, as displayed in the figures.

Hidden Markov model and statistical analysis. A hidden Markov 
model λ is defined as λ = (X, A, Y, B, π), in which X is the set of 
hidden states, A is a matrix of transition probabilities from one 
state to another, Y is the set of observable variables per state,  
B is a matrix of observation probabilities storing the probability of 
observation k being produced from state j (also termed emission 
or observation probability), and π is a vector of probabilities of 
the initial state (first time point) in the trajectory.
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The hidden states X are the true cellular stages expressed 
by the class labels (eight classes for fluorescent histone H2B; 
Fig. 1b). The hidden Markov model is learned by maximum 
likelihood estimates from the aligned trajectories of estimated 
prediction probabilities of the support vector machine, which 
is a three-dimensional array over trajectories, time points and 
classes. Transition probabilities A are learned from the predic-
tion probabilities along the trajectories on the underlying graph 
structure. In a free model all transitions between morphology 
classes were allowed (Fig. 2c). In a constrained model some 
transitions were suppressed based on biological a priori knowl-
edge (transition probabilities were set to 0 for edges missing in 
the graph; Supplementary Fig. 6a). For the initial probabilities 
π the prediction probabilities of all trajectories at the first time 
point are considered. The observables Y are the class labels. 
The observation probabilities were either set to an error rate of 
0.1%, or derived from the confusion matrix of support vector 
machine training.

Using the Viterbi algorithm, each trajectory was corrected 
based on its sequence of support vector machine probability esti-
mates and the trained hidden Markov model for a given experi-
mental condition (decode problem). This correction scheme 
was calculated individually for each marker and experimental 
perturbation condition.

To detect the onset of nuclear envelope breakdown and nuclear 
envelope reformation the time series of IBB-EGFP, intensity 
ratios of individual cells were analyzed. We computed the ratio 
by a shrunken area of the chromatin object and a ring around. 
The onset was defined as the time point where the ratio was 
1.5-fold increased above the ratio at the time point of chromo-
some segregation.

For data normalization in Figure 5b we computed the z scores 
of mitotic exit timing for all siRNA conditions (mean over all 
values of one condition). The z score was computed by the mean 
of negative controls and the s.d. of the entire dataset.

Implementation and performance. The basic image process-
ing was implemented in C++ using VIGRA (vision with generic 
algorithm) (http://hci.iwr.uni-heidelberg.de/vigra/) and in 
house-developed extensions. The C++ code was then wrapped 
for Python, which is a programming language particularly well-
suited for handling complex data structures and integration of 
external modules. Statistical analysis and plots were performed 
with the R project (http://www.r-project.org/). The entire 

software package is platform-independent, and was compiled 
for Mac OS X and Windows environments.

Computation of each movie required 4–20 s per image and proc-
essor node, consuming 500–1,500 megabytes of RAM, depending 
of the number of frames and objects per frame. As an example, 
a single movie of Figure 2 with 206 frames and ~37,000 objects 
required a total processing time of 34 min on a single processor 
node. For high-throughput analysis, we implemented distributed 
computing on a farm of desktop computers (four MacPro 2.2GHz, 
28 cores total).

Software and data resources. CecogAnalyzer is a platform-
independent graphical user interface, which covers the entire 
workflow presented in this paper. The software is publicly avail-
able in source and binary versions and was tested on MacOS X 
Leopard/SnowLeopard and Windows XP/7. We use a subversion 
repository for concurrent software development by remote con-
tributors and tracking of software changes. Our website is based 
on the project management tool TRAC (http://trac.edgewall.
org/), which allows coordination of this open-source project by 
milestones, tickets, wiki pages and browsing of code changes.

The software, a subset of raw images presented here, the classi-
fiers and parameters used for generating the figures are available 
online at http://www.cellcognition.org/. The classifiers datasets 
consisting of annotated samples and extracted features are inter-
actively visualized by Adobe Flex and can be browsed online at 
http://flex.cellcognition.org/.

The MetaMorph journals developed for fast and robust acquisition 
of the time-lapse experiments presented here are available on our 
group website: http://www.bc.biol.ethz.ch/people/groups/gerlichd.
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