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Mapping genetic interactions in human cancer cells
with RNAi and multiparametric phenotyping

Christina Laufer’->4, Bernd Fischer®#4, Maximilian Billmann!2, Wolfgang Huber? & Michael Boutros!2

Genetic interactions influence many phenotypes and

can be used as a powerful experimental tool to discover
functional relationships between genes. Here we describe a
robust and scalable method to systematically map genetic
interactions in human cancer cells using combinatorial RNAi
and high-throughput imaging. Through automated, single-
cell phenotyping, we measured genetic interactions across

a broad spectrum of phenotypes, including cell count, cell
eccentricity and nuclear area. We mapped genetic interactions
of epigenetic regulators in colon cancer cells, recovering known
protein complexes. Our study also revealed the prospects and
challenges of studying genetic interactions in human cells
using multiparametric phenotyping.

Often, the combined effect of two genetic variants is not simply
the product of the individual effects but rather a buffered or
aggravated outcome!—generally termed a ‘genetic interaction’
Interactions between genes are believed to shape complex
phenotypes and can also influence how tumor cells respond to
treatment®3. Experimentally, genetic interactions have been sys-
tematically uncovered in model organisms: for example, through
the use of cell viability as a compound phenotype*-8. Focused
screens in human cells have been used mainly to detect synthetic
lethal interactions for specific mutations®~12. We developed a
method to systematically analyze genetic interactions of epige-
netic regulators in human colon cancer cells using RNAi!'>!4and
morphological phenotypes. In total, we performed 51,680 combi-
natorial RNAi experiments and identified genetic interactions for
one or more of 11 phenotypes between 2,376 gene pairs.

RESULTS

Selection of RNAi reagents and multiphenotype assays

We compiled a set of 323 genes implicated in epigenetic regu-
lation, including genes encoding members of chromatin-
remodeling complexes or chromatin-modifying enzymes, genes
containing domains associated with epigenetic processes, and
reported interaction partners of these (Supplementary Fig. 1 and
Supplementary Table 1). For each of these genes, we selected
three independent siRNAs and quantified their knockdown

efficiency by quantitative PCR (qPCR) (Supplementary
Tables 2 and 3). For 70% of the genes, at least two out of three
siRNAs reduced gene expression to <50% (Supplementary
Table 4). For the combinatorial RNAi experiment, we chose the
two siRNAs per gene that had the most similar qPCR values to
reduce phenotypic differences due to knockdown efficiency.

We established a workflow for automated analysis of RNAi-
induced cell morphology phenotypes at the single-cell level by
automated microscopy. For combinatorial RNAi, cells were trans-
fected with all four siRNA combinations per double gene knock-
down. After 3 d of RNAI, cells were stained for DNA, ¢i-tubulin and
actin (Fig. 1a). Multiple quantitative features were computed for
each cell. These data included specific cell morphological pheno-
types as well as cell number as a measure of overall cell fitness. In
total, we extracted 353 phenotypic features per experiment.

A wide range of phenotypes was observed upon knockdown
of target genes. For example, depletion of SETD8, which encodes
a histone 4 lysine 20 (H4K20) methyltransferase also linked
to methylation of PCNA and to S-phase progression!>1, led
to substantial lengthening of the cells’ major axes (Fig. 1b,c).
In contrast, knockdown of the transcriptional coactivator TCF20
caused enlargement of the nuclei but not of the cell bodies.
In addition, nuclei were rounder than normal, leading to reduced
nuclear eccentricity (Fig. 1d).

Interaction screen and quality control

To construct genetic interaction profiles, we chose an experimen-
tal design to test each of the 323 epigenetic regulators against a
subset of genes, which we termed the query genes. Suitable query
selection can significantly reduce experiment size while allowing
retention of most of the information content!”. We selected a sub-
set of the target genes such that the phenotypic landscape of their
single-gene knockdowns was covered approximately uniformly,
as well as according to technical criteria including reproducibil-
ity and perturbation efficiency. The selection of these 20 query
genes was made on the basis of principal-component analysis of
the multivariate phenotypes (Supplementary Fig. 2). The com-
binatorial knockdown screen was performed in two biological
replicates. In total, we performed 51,680 pairwise knockdown
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Figure 1 | Combinatorial RNAi and multiparametric phenotyping. (a) Screen workflow. (b-d) HCT116
cells transfected with nontargeting siRNA control (b) or with siRNAs targeting SETD8 (c) or TCF20 (d)
and stained for DNA (blue), tubulin (green) and actin (red). Bar graphs display five phenotypic

features. Circles represent individual replicate measurements.

extraction, quality control on multiple phenotypes

was measured with a Pearson correlation
coefficient of 0.94 between two biological
replicates (Fig. 2a). Out of the 353 pheno-
typic features, 227 had a correlation of >0.6
between biological replicates and were
considered further (Fig. 2b). Because the
features were not independent from each
other, we identified a subset of nonredun-
dant features by stepwise selection based
on linear decomposition (Supplementary
Fig. 3). In each step of the selection
process, the data vector of every avail-
able feature was decomposed into two
components: the component already
spanned by previously selected features
and a residual component. The feature
with the highest ratio of signal to noise in
the residual component was selected, as
measured by the correlation between the
biological replicates. The process was iter-
ated until no further informative features
could be found. This algorithm selected
11 features that contained nonredun-
dant, reproducible phenotypic profiles
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experiments by assaying 323 x 20 target-query gene pairs with
2 x 2 siRNA designs per gene pair and two biological replicates.
Images were acquired at 10x magnification, which allowed for
resolution of intracellular structures. Each well was fully covered
by four images in each of the three color channels, resulting in
620,160 images. On average, 7,100 cells were imaged and pheno-
typed per experiment.

Overall, the reproducibility of the phenotypic feature mea-
surements was high: for instance, the eccentricity of the nucleus

(Supplementary Fig. 4).

In addition, we applied stringent quality control that aimed to
address limitations of RNAi such as off-target effects or insuf-
ficient on-target knockdown efficiency. We compared the pheno-
typic profiles, across the set of 20 queries and all phenotypic
features, of the two independent siRNAs for each target gene. If
off-target effects exist for these siRNAs, they are generally expected
to be different, leading to discrepancies between their pheno-
typic profiles. Moreover, if an siRNA lacks efficiency, its pheno-
typic profile is dominated by noise. Therefore, we considered
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Figure 3 | Genetic interactions. (a) Representative image regions

for single and double knockdowns of PHF16 and SETDS8. Bars display

7 scores for the feature “actin major axis,” a measure of cell-body
elongation, for all four siRNA reagent combinations. (b) Phenotype-
specific genetic interaction of SIN3A and RUVBLI. Bars display & scores
for “nuclear eccentricity.” (c) Validation of the interaction between
SIN3A and RUVBLI in Hela cells. Circles in a-c represent individual
replicate measurements; asterisks indicate statistical significance in
the moderated t-tests (*FDR < 0.05; **FDR < 0.01). (d) Overlap of
genetic interactions detected from four different phenotypes. Two of the
phenotypes shown are derived from cytoskeletal features, and two are
nucleus specific.

for each pair of siRNA designs the Pearson correlation coeffi-
cient of their phenotypic profiles, computed as the average of per-
phenotype correlation coefficients. We termed this measure the
siRNA congruence score. A high value of this score suggests that
both siRNAs cause a phenotype that is mediated by an on-target
effect. The score successfully detected unreliable reagents: for
instance, a low score was observed for the two siRNAs targeting
CHAFIA. Cells treated with one of these two siRNAs (in com-
bination with the same siRNA against DPF2) showed different
elongation of the cytoskeleton (Fig. 2¢). Overall, the congruence
score was greater than 0.7 for 282 out of 323 genes. These genes
were used for further analysis (Fig. 2d).

Identification of genetic interactions

To identify genetic interactions, we computed an interaction
score, termed the 7 score!®1%, that measures the difference
between the prediction from the non-interacting model and
the observed value (Online Methods). For interaction call-
ing, we used a moderated t-test on the biological replicates
for each siRNA pair and phenotypic feature?0. This statistical
test procedure is adapted to settings with small sample size but
large number of similar tests. The tests detected 5,262 genetic
interactions at a false discovery rate of 1%; these interactions
were between 2,376 gene pairs (Supplementary Table 5). The
appropriateness of the non-interacting model and of the param-
eter fitting was assessed by a sparsity criterion: most 7 scores
were small, and for most of the 284,240 tests performed (for
all combinations of 323 target genes, 20 query genes, 4 siRNA
pairs and 11 phenotypes), no interaction was called, indicat-
ing that the bulk of data were fit by the non-interacting model
and that interaction calls were specific. Batch effects can com-
plicate the analysis of genetic interaction data sets’. We con-
firmed the absence of strong batch effects with diagnostic plots
(Supplementary Fig. 5).

The number of cells assayed per double perturbation, which
was 7,100 on average, was a critical parameter for the experiment’s
sensitivity. We investigated the role of this parameter by repeating
the analysis with subsampled data sets, using one-half and one-
quarter of the cells imaged, corresponding to 3,550 and 1,775
cells per experiment on average. With these reduced data, the
number of interactions called decreased substantially, dropping
to 1,022 (19%) for the smaller set of cells (Fig. 2e). This strong
dependence reflects the fact that the scale of the interactions was
generally much smaller than the scale of the phenotypes them-
selves, requiring high precision of the phenotype measurements.
This observation may serve as a guideline for the design of
combinatorial RNAi experiments.
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Genetic interactions were specific for phenotypic features
Although for some gene pairs, interactions were detected across
multiple phenotypic features, we observed many cases in which
phenotype-specific patterns emerged. For instance, knockdown
of SETDS led to elongation of the cell’s major axis; knockdown
of PHF16 had no effect on this feature; and perturbation of both
genes led to a significantly larger cell body, indicating a positive
genetic interaction (Fig. 3a). Similarly, the single perturbations
of SIN3A and RUVBLI yielded normally shaped nuclei, whereas
combined depletion led to reduced nuclear eccentricity (Fig. 3b).
In contrast, neither gene pair showed a significant genetic inter-
action for cell number. These examples show how acquiring
genetic interactions for multiple different phenotypes provides
increased sensitivity and specificity.

We retested an exemplary interaction, between SIN3A and
RUVBLI, with independent RNAi reagents and a different
cell line. Analysis of nuclear eccentricity after single and dou-
ble knockdowns of these genes with pools of four independent
siRNAs from a different library (Dharmacon) confirmed the neg-
ative interaction between the genes that we found in the screen
(7 score = —0.59, P = 0.003, t-test). Furthermore, we validated
this genetic interaction in HeLa cells using the same RNAi rea-
gents as in the screen. All four combinations of siRNAs target-
ing SIN3A and RUVBLI yielded cells with a significantly lower
nuclear eccentricity than expected, indicating that RUVBLI and
SIN3A show the same interaction in HeLa cells as in the HCT116
cells used in the screen (Fig. 3c¢).
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Figure 4 | Genetic interaction profiles. (a) Heat a
map overview of all measured interactions

(7 scores). 7 scores for each feature were scaled to
median deviation 1. The rows (y axis) correspond
to 564 siRNAs targeting the 282 quality-controlled
template genes, the columns (x axis) to 40 siRNAs
targeting 20 query genes, times the 11 non-
redundant phenotypic features. (b) Density plots
(smoothed histograms) of the Pearson correlation
coefficients between interaction profiles of siRNAs
targeting different genes (red) and between siRNAs
targeting the same gene (blue). For the latter,

the set of genes was restricted to those with
information-rich profiles, defined as containing

at least five 7 scores with 7> 5. High correlation
coefficients of the interaction profiles suggest
on-target specificity of RNAi reagents. Tick marks
show individual correlation values for same-

gene pairs. (c) Unsupervised cluster analysis of
the information-rich gene interaction profiles.
Clustering was performed according to the

Pearson correlation of gene interaction profiles.
Three clusters with functionally related genes
identified from positive correlation of interaction
profiles are shown.

We found that the screen-wide overlap
of genetic interactions between pheno-
typic features associated with the same
cellular compartment was higher than that
for features of different compartments, for
example, cell major axis and nuclear major
axis (Fig. 3d).

Target genes

Genetic interaction profiles and functional analysis

For each target gene siRNA, we obtained a genetic interaction pro-
file comprising the interactions with all query genes with respect
to the 11 phenotypes (Fig. 4a). Interaction profiles of the two
independent siRNA designs per target gene were highly corre-
lated in those cases in which the profiles showed sufficient signal
(Fig. 4b). Unsupervised clustering of these genes based on the
Pearson correlation of their interaction profiles revealed several
clusters of well-characterized function (Fig. 4c). For example, one
cluster contained genes encoding three members of the TIP60
acetyltransferase chromatin remodeling complex, EP400, ACTL6A
and TRRAP?!. In another cluster, we found genes encoding three
(out of six) proteins containing an acetylated lysine-binding bro-
modomain, thereby suggesting a functional connection. A fur-
ther cluster comprised genes for two common members of the
SWRI and INO80 chromatin remodeling complexes, RUVBLI
and RUVBL2 (ref. 22), and the mRNA splicing factors PHF5A and
CDC5L?324, These findings indicate that gene functions can be
inferred from genetic interaction profiles generated by siRNAs.

DISCUSSION

Genetic interaction analysis is a powerful approach to function-
ally connect genes on the basis of their combined contributions
to phenotypic outcomes. Our study also outlines challenges and
provides guidelines for the design of comprehensive genetic
interaction experiments in human cells. First, we calculated
an siRNA congruence score based on multiple sequence-
independent reagents and their multiparametric phenotypes.
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This quality-control step allowed to us to remove perturbations
from further analysis that showed inconsistent phenotypes due
to off-target effects or knockdown inefficiencies. Second, we ran
multiple biological replicates and phenotyped large numbers of
individual cells (>5,000) in each experiment. Single-cell phenotyp-
ing of a sufficient number of cells is crucial and has a direct impact
on the sensitivity of the interaction analysis. Third, we believe
that saturation effects are negligible because the fitted interac-
tion matrix is sparse. Although these considerations increase the
size of genetic interaction experiments, we have implemented
two key experimental design strategies that can ameliorate these
limitations. We believe that single-cell, multiparametric pheno-
typing provides the experimental and computational means to
filter against experimental artifacts and is a rich source of genetic
interactions. In addition, using asymmetric interaction matrices
and a target-query design with a selected set of queries based on
divergent phenotypes reduces the size of the interaction matrices.
Although pooled short hairpin RNA screens provide an alter-
native concept for the measurement of genetic interactions and
have the advantage of easier scalability?>~%7, such approaches are
limited to selectable phenotypes, such as cell fitness. In contrast,
well-based approaches allow the phenotyping of single cells
beyond cell number and can contribute epistatic information on
multiple (parallel) processes.

Several differences between genetic interaction experiments in
human cells and those in model organisms are noteworthy. On a
technical level, we observed that knockdown efficiencies for human
cells were lower and off-target effects more widespread than in
Drosophila melanogaster cells'8, thus requiring additional compu-
tational filtering and an additional step in the experimental design,
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wherein multiple RNAi reagents are pre-evaluated according to the
phenotype-based RNAi congruence score. As compared to genetic
interaction experiments in yeast, we found no strong preference
for positive or negative interactions with any of the 11 phenotypic
features (Supplementary Fig. 6). In yeast, genome-scale double
knockouts assayed for the colony size phenotype showed a prefer-
ence for aggravating interactions*. The reasons for this difference
remain to be understood; possible explanations could include
the hypomorphic nature of knockdowns as compared to genetic
lesions (as in yeast) and higher genetic redundancy.

Although scaling well-based genetic interaction experiments
to a genome-wide analysis in human cells will present signifi-
cant technical challenges, we believe that focused genetic inter-
action experiments provide a powerful method to dissect the
reorganization of cellular networks, such as that triggered by
cancer-associated genetic variants. Image-based phenotyping
and asymmetric experimental design allow measurement of the
contribution of genes beyond classical synthetic lethality analysis.
As different platforms to measure genetic interactions in human
cells are becoming available?”-28, large-scale mapping of genetic
interactions promises to increase our understanding of biological
systems in health and disease.

METHODS
Methods and any associated references are available in the online
version of the paper.

Accession codes. The data and the R scripts for analysis are
available as R/Bioconductor package HD2013SGI from http://
www.bioconductor.org/.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS

Cell culture conditions. HCT116 cells were obtained from
the ATCC and propagated in McCoy’s 5a modified medium
(Life Technologies) supplemented with 10% FBS (Biochrom)
at 37 °C, 5% CO,. Subcultivation was performed every 2-3 d
at a ratio of 1:5 to 1:10. HeLa cells were obtained from ATCC
and propagated in Dulbecco’s modified Eagle medium (DMEM)
(Life Technologies) supplemented with 10% FBS (Biochrom) at
37 °C, 5% CO,. Subcultivation was performed every 2-3 d at a
ratio of 1:10 to 1:20.

Quantification of siRNA knockdown efficiency by qPCR. Cells
were reverse transfected with siRNAs in 96-well plates using
Dharmafect 1 transfection reagent (Dharmacon) according to the
manufacturer’s instructions. In brief, we combined 10 pl siRNA
(100 nM) with 30 pl of transfection mix (0.1 pl Dharmafect 1
in RPMI 1640 medium) and incubated the mixture for 30 min
at room temperature. After complex formation, 10,000 cells in
60 ul McCoy’s medium were seeded per well and incubated for
3 d at 37° C. For quantitative PCR (qPCR) analysis, cells were lysed
in 20 ul QuickExtract RNA extraction solution (Epicentre). Lysate
(11 pl) was used for cDNA synthesis with the Revertaid cDNA
synthesis kit (Fermentas) using oligo(dT) primers. qPCR reactions
were performed in duplicate with the Universal ProbeLibrary
system (Roche Applied Biosciences) according to the manufac-
turer’s instructions and analyzed using the manufacturer’s soft-
ware. Intron-spanning primers were designed with the Universal
ProbeLibrary Assay Design Centre (Supplementary Table 3). All
qPCR experiments were carried out in three biological replicates.
Of all siRNAs, 68% caused a reduction in transcript level to <50%.
For 47% of genes, three out of three siRNAs, and for 23% of genes,
two out of three siRNAs reduced transcript levels to <50%.

Selection of siRNAs. The siRNAs for the combinatorial RNAi
were selected from the Ambion siRNA library, which com-
prises three individual nonoverlapping siRNA designs for each
gene (Supplementary Table 2). We chose two siRNA designs
per gene on the basis of their qPCR results in the single knock-
downs. To avoid strong efficiency differences between the siRNA
designs, we selected the two siRNAs with most similar mRNA
levels upon knockdown. For 36 of 323 genes, incomplete qPCR
analysis results were obtained, and we chose either the best-
performing design plus one randomly chosen design, siRNAs
validated by the manufacturer or two randomly chosen designs
(Supplementary Table 4).

Combinatorial RNAi. For the double knockdowns we plated
2 x 2.5 1l of siRNAs (200 nM) in 384-well clear-bottom microscopy
plates (BD Biosciences). First, we transferred aliquots of the siRNAs
targeting the 323 target genes, distributing the two individual
designs onto separate plates. Then we added one of the query
siRNAs to each template plate, creating 25,840 RNAi combina-
tions per replicate. The combinatorial RNAi was performed in
two biological replicates yielding a total of 51,680 combinato-
rial knockdowns. HCT116 cells were reverse transfected using
Dharmafect 1 transfection reagent (Dharmacon) according to
the manufacturer’s instructions. Briefly, 5 ul of siRNAs (200 nM)
were incubated for 30 min with 15 pul of transfection mix (0.05 pl
Dharmafect 1 in RPMI-1640 medium), and then 1,750 cells in
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30 ul McCoy’s medium were seeded into each well and incubated
for3dat37°C.

Cell staining and imaging. Cell staining was performed using
a Biomek FX robot with 384-well tip head. After 3 d cells were
fixed and permeabilized with 5% paraformaldehyde (Sigma),
0.2% Triton X-100 (Sigma) for 45 min at room temperature.
To prevent nonspecific antibody binding, cells were incubated
with 3% bovine serum albumin (Gerbu), 0.05% Triton X-100 for
30 min. Nuclei, tubulin and actin were stained with 2 pug/ml
Hoechst 33342 (Invitrogen), anti-tubulin antibody labeled
with fluorescein isothiocyanate (Sigma, catalog number F2168,
clone DM1A, 1:750) and 67 ng/ml phalloidin labeled with tetra-
methylrhodamine isothiocyanate (Sigma) in blocking solution
at 4 °C overnight. Cells were washed four times with PBS, and
0.05% sodium azide (Sigma) was added for storage. Plates were
sealed with aluminum sealing tape (Corning) and stored until
imaged at 4 °C while protected from light. Fluorescence images
were acquired with an InCell Analyzer 2000 (GE Healthcare) at
10x magnification. To cover each well fully, we imaged four sites
per well, resulting in a total of 620,160 images.

Image processing and feature extraction. Images were obtained
from the InCell Analyzer 2000 as 12-bit TIFF images of size 2,048
pixels x 2,048 pixels at three colors. The data set comprised
5.6 terabytes. We adapted image segmentation and feature extraction
methods from previous work?®-31, using the R package EBImage32.
Nuclei were segmented by adaptive thresholding with a window
size of 10 pixels (corresponding to 7.4 pm) and subsequent mor-
phological filters. Nucleus segmentation was extended to the cell
body by a Voronoi tessellation-based propagation algorithm?33.
Features for intensity, shape and texture were extracted for each
cell from the DAPI channel using the nucleus segmentation and
from the actin and tubulin channels using the mask of the cell
body. Additional features were extracted from the joint distribu-
tion of the DAPI and the tubulin signals using the cell body mask.
Features were summarized per experiment by the arithmetic
mean over all cells. The number of segmented nuclei was used as
a proxy for cell count. Features were transformed to a generalized
logarithm (glog) scale as suggested by Huber ef al.34.

Selection of nonredundant features. We first manually selected
the count feature. To select further phenotypic features, we used a
stepwise feature-selection algorithm. In each step, we performed a
linear decomposition of each remaining feature into (i) the com-
ponent contained in the subspace spanned by the already selected
features and (ii) the residuals. To assess the signal-to-noise ratio
of the residual components, we computed the Pearson correlation
between their biological replicates and chose the feature with the
highest correlation. To define a stopping criterion, we noted that
if all features were to contain random data, the distribution of
correlation coefficients would be symmetric around 0. Therefore,
we terminated the feature selection once the number of nega-
tively correlated candidate features exceeded that of positively
correlated ones.

Genetic interaction scores and statistical analysis. Single-gene

effects (main effects) were computed by robust fit of a linear
combination of the two main effects for each glog-transformed
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measurement with an L1-loss function. This model corresponds
to a multiplicative model on the original feature scale!®3, in
which the expected outcome for a non-interacting gene pair is
the product of the two main effects. Following Horn ef al.'$, we
limited the impact of potentially remaining subtle batch effects
on our interaction estimates through the target-query experimen-
tal design: effects that influenced whole plates were absorbed by
the query effect estimates, and effects associated with particular
spatial positions in the plates (for example, subtle edge effects)
were absorbed by the target effect estimates, leaving interaction
estimates unaffected. Main effects were estimated for each siRNA
reagent and independently for each phenotypic feature. Model fit
was verified by small size, symmetry and lack of correlation of
the fit residuals. To filter out experimental artifacts, we discarded
measurements whose replicates differed by more than four times
the median of the absolute value of all differences between the two
replicates. Genetic interaction scores (7 scores) were calculated
as the difference (on the glog scale) between the observed pheno-
type and the expected (non-interaction) value. To test scores for
statistical significance, we used the two biological replicates and
computed P values with the moderated t-test of the R package
limma?0. This test is adapted for settings with a small sample
size but a large number of similar tests, as through the use of an
empirical Bayes variance estimator it overcomes the problem of
large variability that, for instance, the usual t-statistic has in this
setting. P values were corrected for multiple testing by the method
of Benjamini-Hochberg3®, which controls the false discovery rate.
A cutoff on the adjusted P values of 0.01 is applied to call genetic
interactions (columns “padj” in Supplementary Table 5).

Validation of the interaction between SIN3A and RUVBLI.
For validation with Dharmacon siRNA pools, HCT116 cells were
reverse transfected as described above in four replicates. For double
knockdowns, cells were transfected with 2 x 2.5 pl of siRNA pools
(500 nM each); for single knockdowns, cells were transfected
with 2.5 pl of siRNA pool (500 nM) targeting SIN3A or RUVBLI
together with 2.5 ul of control siRNA (500 nM) targeting Renilla
luciferase (RLuc). Catalog numbers of the used RNAi reagents are

doi:10.1038/nmeth.2436

M-012990-00 (SIN3A), M-008977-00 (RUVBLI) and P-002070-
01-20 (RLuc). For the validation in HeLa cells, cells were reverse
transfected in four replicates. For double knockdowns, the 2 x 2
Ambion siRNA designs targeting RUVBLI and SIN3A were com-
bined in all four possible ways using 2.5 pl (200 nM) of each
siRNA. For single knockdowns, 2.5 ul of siRNAs targeting SIN3A
or RUVBLI were combined with 2.5 1l of nontargeting siRNA con-
trol (200 nM). Reverse transfection was performed as described
above with the exception of using Lipofectamine RNAIMAX
(Life Technologies) instead of Dharmafect 1 transfection reagent
under otherwise unchanged conditions. After complex formation,
1,250 cells in 30 ul DMEM were seeded into each well and incu-
bated for 3 d at 37 °C. Cell staining, imaging, image analysis and
feature extraction were performed as described above. Baseline
and main effects were computed from nontargeting controls and
single-gene knockdowns for each siRNA design. 7 scores were
computed using a log-additive model as above. P values were
computed by a t-test over four replicates for HeLa cells.
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