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Genetic interactions influence many phenotypes and 
can be used as a powerful experimental tool to discover 
functional relationships between genes. Here we describe a 
robust and scalable method to systematically map genetic 
interactions in human cancer cells using combinatorial RNAi 
and high-throughput imaging. Through automated, single-
cell phenotyping, we measured genetic interactions across 
a broad spectrum of phenotypes, including cell count, cell 
eccentricity and nuclear area. We mapped genetic interactions 
of epigenetic regulators in colon cancer cells, recovering known 
protein complexes. Our study also revealed the prospects and 
challenges of studying genetic interactions in human cells 
using multiparametric phenotyping.

Often, the combined effect of two genetic variants is not simply  
the product of the individual effects but rather a buffered or 
aggravated outcome1—generally termed a ‘genetic interaction’.  
Interactions between genes are believed to shape complex 
phenotypes and can also influence how tumor cells respond to 
treatment2,3. Experimentally, genetic interactions have been sys-
tematically uncovered in model organisms: for example, through 
the use of cell viability as a compound phenotype4–8. Focused 
screens in human cells have been used mainly to detect synthetic 
lethal interactions for specific mutations9–12. We developed a 
method to systematically analyze genetic interactions of epige-
netic regulators in human colon cancer cells using RNAi13,14 and 
morphological phenotypes. In total, we performed 51,680 combi-
natorial RNAi experiments and identified genetic interactions for 
one or more of 11 phenotypes between 2,376 gene pairs.

RESULTS
Selection of RNAi reagents and multiphenotype assays
We compiled a set of 323 genes implicated in epigenetic regu-
lation, including genes encoding members of chromatin-
remodeling complexes or chromatin-modifying enzymes, genes 
containing domains associated with epigenetic processes, and 
reported interaction partners of these (Supplementary Fig. 1 and 
Supplementary Table 1). For each of these genes, we selected 
three independent siRNAs and quantified their knockdown 
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efficiency by quantitative PCR (qPCR) (Supplementary  
Tables 2 and 3). For 70% of the genes, at least two out of three 
siRNAs reduced gene expression to <50% (Supplementary  
Table 4). For the combinatorial RNAi experiment, we chose the 
two siRNAs per gene that had the most similar qPCR values to 
reduce phenotypic differences due to knockdown efficiency.

We established a workflow for automated analysis of RNAi-
induced cell morphology phenotypes at the single-cell level by 
automated microscopy. For combinatorial RNAi, cells were trans-
fected with all four siRNA combinations per double gene knock-
down. After 3 d of RNAi, cells were stained for DNA, α-tubulin and 
actin (Fig. 1a). Multiple quantitative features were computed for 
each cell. These data included specific cell morphological pheno
types as well as cell number as a measure of overall cell fitness. In 
total, we extracted 353 phenotypic features per experiment.

A wide range of phenotypes was observed upon knockdown 
of target genes. For example, depletion of SETD8, which encodes 
a histone 4 lysine 20 (H4K20) methyltransferase also linked 
to methylation of PCNA and to S-phase progression15,16, led 
to substantial lengthening of the cells’ major axes (Fig. 1b,c).  
In contrast, knockdown of the transcriptional coactivator TCF20 
caused enlargement of the nuclei but not of the cell bodies.  
In addition, nuclei were rounder than normal, leading to reduced 
nuclear eccentricity (Fig. 1d).

Interaction screen and quality control
To construct genetic interaction profiles, we chose an experimen-
tal design to test each of the 323 epigenetic regulators against a 
subset of genes, which we termed the query genes. Suitable query 
selection can significantly reduce experiment size while allowing 
retention of most of the information content17. We selected a sub-
set of the target genes such that the phenotypic landscape of their 
single-gene knockdowns was covered approximately uniformly, 
as well as according to technical criteria including reproducibil-
ity and perturbation efficiency. The selection of these 20 query 
genes was made on the basis of principal-component analysis of 
the multivariate phenotypes (Supplementary Fig. 2). The com-
binatorial knockdown screen was performed in two biological 
replicates. In total, we performed 51,680 pairwise knockdown 
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experiments by assaying 323 × 20 target-query gene pairs with 
2 × 2 siRNA designs per gene pair and two biological replicates. 
Images were acquired at 10× magnification, which allowed for 
resolution of intracellular structures. Each well was fully covered 
by four images in each of the three color channels, resulting in 
620,160 images. On average, 7,100 cells were imaged and pheno-
typed per experiment.

Overall, the reproducibility of the phenotypic feature mea
surements was high: for instance, the eccentricity of the nucleus 

was measured with a Pearson correlation 
coefficient of 0.94 between two biological  
replicates (Fig. 2a). Out of the 353 pheno
typic features, 227 had a correlation of >0.6 
between biological replicates and were 
considered further (Fig. 2b). Because the 
features were not independent from each 
other, we identified a subset of nonredun-
dant features by stepwise selection based 
on linear decomposition (Supplementary 
Fig. 3). In each step of the selection 
process, the data vector of every avail-
able feature was decomposed into two 
components: the component already 
spanned by previously selected features 
and a residual component. The feature 
with the highest ratio of signal to noise in 
the residual component was selected, as 
measured by the correlation between the 
biological replicates. The process was iter-
ated until no further informative features 
could be found. This algorithm selected 
11 features that contained nonredun-
dant, reproducible phenotypic profiles  
(Supplementary Fig. 4).

In addition, we applied stringent quality control that aimed to 
address limitations of RNAi such as off-target effects or insuf-
ficient on-target knockdown efficiency. We compared the pheno
typic profiles, across the set of 20 queries and all phenotypic 
features, of the two independent siRNAs for each target gene. If 
off-target effects exist for these siRNAs, they are generally expected 
to be different, leading to discrepancies between their pheno-
typic profiles. Moreover, if an siRNA lacks efficiency, its pheno
typic profile is dominated by noise. Therefore, we considered  
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for each pair of siRNA designs the Pearson correlation coeffi-
cient of their phenotypic profiles, computed as the average of per-
phenotype correlation coefficients. We termed this measure the 
siRNA congruence score. A high value of this score suggests that 
both siRNAs cause a phenotype that is mediated by an on-target  
effect. The score successfully detected unreliable reagents: for 
instance, a low score was observed for the two siRNAs targeting 
CHAF1A. Cells treated with one of these two siRNAs (in com-
bination with the same siRNA against DPF2) showed different 
elongation of the cytoskeleton (Fig. 2c). Overall, the congruence 
score was greater than 0.7 for 282 out of 323 genes. These genes 
were used for further analysis (Fig. 2d).

Identification of genetic interactions
To identify genetic interactions, we computed an interaction 
score, termed the π score18,19, that measures the difference 
between the prediction from the non-interacting model and 
the observed value (Online Methods). For interaction call-
ing, we used a moderated t-test on the biological replicates 
for each siRNA pair and phenotypic feature20. This statistical 
test procedure is adapted to settings with small sample size but 
large number of similar tests. The tests detected 5,262 genetic 
interactions at a false discovery rate of 1%; these interactions 
were between 2,376 gene pairs (Supplementary Table 5). The 
appropriateness of the non-interacting model and of the param-
eter fitting was assessed by a sparsity criterion: most π scores 
were small, and for most of the 284,240 tests performed (for 
all combinations of 323 target genes, 20 query genes, 4 siRNA 
pairs and 11 phenotypes), no interaction was called, indicat-
ing that the bulk of data were fit by the non-interacting model 
and that interaction calls were specific. Batch effects can com-
plicate the analysis of genetic interaction data sets7. We con-
firmed the absence of strong batch effects with diagnostic plots  
(Supplementary Fig. 5).

The number of cells assayed per double perturbation, which 
was 7,100 on average, was a critical parameter for the experiment’s 
sensitivity. We investigated the role of this parameter by repeating 
the analysis with subsampled data sets, using one-half and one-
quarter of the cells imaged, corresponding to 3,550 and 1,775 
cells per experiment on average. With these reduced data, the 
number of interactions called decreased substantially, dropping 
to 1,022 (19%) for the smaller set of cells (Fig. 2e). This strong 
dependence reflects the fact that the scale of the interactions was 
generally much smaller than the scale of the phenotypes them-
selves, requiring high precision of the phenotype measurements.  
This observation may serve as a guideline for the design of 
combinatorial RNAi experiments.

Genetic interactions were specific for phenotypic features
Although for some gene pairs, interactions were detected across 
multiple phenotypic features, we observed many cases in which 
phenotype-specific patterns emerged. For instance, knockdown 
of SETD8 led to elongation of the cell’s major axis; knockdown 
of PHF16 had no effect on this feature; and perturbation of both 
genes led to a significantly larger cell body, indicating a positive 
genetic interaction (Fig. 3a). Similarly, the single perturbations 
of SIN3A and RUVBL1 yielded normally shaped nuclei, whereas 
combined depletion led to reduced nuclear eccentricity (Fig. 3b).  
In contrast, neither gene pair showed a significant genetic inter
action for cell number. These examples show how acquiring 
genetic interactions for multiple different phenotypes provides 
increased sensitivity and specificity.

We retested an exemplary interaction, between SIN3A and 
RUVBL1, with independent RNAi reagents and a different 
cell line. Analysis of nuclear eccentricity after single and dou-
ble knockdowns of these genes with pools of four independent  
siRNAs from a different library (Dharmacon) confirmed the neg-
ative interaction between the genes that we found in the screen 
(π score = −0.59, P = 0.003, t-test). Furthermore, we validated 
this genetic interaction in HeLa cells using the same RNAi rea-
gents as in the screen. All four combinations of siRNAs target-
ing SIN3A and RUVBL1 yielded cells with a significantly lower 
nuclear eccentricity than expected, indicating that RUVBL1 and 
SIN3A show the same interaction in HeLa cells as in the HCT116 
cells used in the screen (Fig. 3c).
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Figure 3 | Genetic interactions. (a) Representative image regions 
for single and double knockdowns of PHF16 and SETD8. Bars display 
π scores for the feature “actin major axis,” a measure of cell-body 
elongation, for all four siRNA reagent combinations. (b) Phenotype-
specific genetic interaction of SIN3A and RUVBL1. Bars display π scores 
for “nuclear eccentricity.” (c) Validation of the interaction between 
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We found that the screen-wide overlap 
of genetic interactions between pheno-
typic features associated with the same 
cellular compartment was higher than that 
for features of different compartments, for 
example, cell major axis and nuclear major 
axis (Fig. 3d).

Genetic interaction profiles and functional analysis
For each target gene siRNA, we obtained a genetic interaction pro-
file comprising the interactions with all query genes with respect 
to the 11 phenotypes (Fig. 4a). Interaction profiles of the two 
independent siRNA designs per target gene were highly corre-
lated in those cases in which the profiles showed sufficient signal  
(Fig. 4b). Unsupervised clustering of these genes based on the 
Pearson correlation of their interaction profiles revealed several 
clusters of well-characterized function (Fig. 4c). For example, one 
cluster contained genes encoding three members of the TIP60 
acetyltransferase chromatin remodeling complex, EP400, ACTL6A 
and TRRAP21. In another cluster, we found genes encoding three 
(out of six) proteins containing an acetylated lysine–binding bro-
modomain, thereby suggesting a functional connection. A fur-
ther cluster comprised genes for two common members of the 
SWR1 and INO80 chromatin remodeling complexes, RUVBL1 
and RUVBL2 (ref. 22), and the mRNA splicing factors PHF5A and 
CDC5L23,24. These findings indicate that gene functions can be 
inferred from genetic interaction profiles generated by siRNAs.

DISCUSSION
Genetic interaction analysis is a powerful approach to function-
ally connect genes on the basis of their combined contributions 
to phenotypic outcomes. Our study also outlines challenges and 
provides guidelines for the design of comprehensive genetic 
interaction experiments in human cells. First, we calculated 
an siRNA congruence score based on multiple sequence- 
independent reagents and their multiparametric phenotypes. 

This quality-control step allowed to us to remove perturbations 
from further analysis that showed inconsistent phenotypes due 
to off-target effects or knockdown inefficiencies. Second, we ran 
multiple biological replicates and phenotyped large numbers of 
individual cells (>5,000) in each experiment. Single-cell phenotyp-
ing of a sufficient number of cells is crucial and has a direct impact 
on the sensitivity of the interaction analysis. Third, we believe 
that saturation effects are negligible because the fitted interac-
tion matrix is sparse. Although these considerations increase the 
size of genetic interaction experiments, we have implemented 
two key experimental design strategies that can ameliorate these 
limitations. We believe that single-cell, multiparametric pheno-
typing provides the experimental and computational means to 
filter against experimental artifacts and is a rich source of genetic 
interactions. In addition, using asymmetric interaction matrices 
and a target-query design with a selected set of queries based on 
divergent phenotypes reduces the size of the interaction matrices. 
Although pooled short hairpin RNA screens provide an alter-
native concept for the measurement of genetic interactions and 
have the advantage of easier scalability25–27, such approaches are  
limited to selectable phenotypes, such as cell fitness. In contrast, 
well-based approaches allow the phenotyping of single cells 
beyond cell number and can contribute epistatic information on 
multiple (parallel) processes.

Several differences between genetic interaction experiments in 
human cells and those in model organisms are noteworthy. On a 
technical level, we observed that knockdown efficiencies for human 
cells were lower and off-target effects more widespread than in 
Drosophila melanogaster cells18, thus requiring additional compu-
tational filtering and an additional step in the experimental design, 
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wherein multiple RNAi reagents are pre-evaluated according to the  
phenotype-based RNAi congruence score. As compared to genetic 
interaction experiments in yeast, we found no strong preference 
for positive or negative interactions with any of the 11 phenotypic 
features (Supplementary Fig. 6). In yeast, genome-scale double 
knockouts assayed for the colony size phenotype showed a prefer-
ence for aggravating interactions4. The reasons for this difference 
remain to be understood; possible explanations could include 
the hypomorphic nature of knockdowns as compared to genetic 
lesions (as in yeast) and higher genetic redundancy.

Although scaling well-based genetic interaction experiments 
to a genome-wide analysis in human cells will present signifi-
cant technical challenges, we believe that focused genetic inter-
action experiments provide a powerful method to dissect the 
reorganization of cellular networks, such as that triggered by 
cancer-associated genetic variants. Image-based phenotyping 
and asymmetric experimental design allow measurement of the 
contribution of genes beyond classical synthetic lethality analysis. 
As different platforms to measure genetic interactions in human 
cells are becoming available27,28, large-scale mapping of genetic  
interactions promises to increase our understanding of biological 
systems in health and disease.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. The data and the R scripts for analysis are 
available as R/Bioconductor package HD2013SGI from http://
www.bioconductor.org/.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Cell culture conditions. HCT116 cells were obtained from 
the ATCC and propagated in McCoy’s 5a modified medium  
(Life Technologies) supplemented with 10% FBS (Biochrom) 
at 37 °C, 5% CO2. Subcultivation was performed every 2–3 d 
at a ratio of 1:5 to 1:10. HeLa cells were obtained from ATCC 
and propagated in Dulbecco’s modified Eagle medium (DMEM)  
(Life Technologies) supplemented with 10% FBS (Biochrom) at 
37 °C, 5% CO2. Subcultivation was performed every 2–3 d at a 
ratio of 1:10 to 1:20.

Quantification of siRNA knockdown efficiency by qPCR. Cells 
were reverse transfected with siRNAs in 96-well plates using 
Dharmafect 1 transfection reagent (Dharmacon) according to the 
manufacturer’s instructions. In brief, we combined 10 µl siRNA 
(100 nM) with 30 µl of transfection mix (0.1 µl Dharmafect 1 
in RPMI 1640 medium) and incubated the mixture for 30 min 
at room temperature. After complex formation, 10,000 cells in  
60 µl McCoy’s medium were seeded per well and incubated for  
3 d at 37° C. For quantitative PCR (qPCR) analysis, cells were lysed 
in 20 µl QuickExtract RNA extraction solution (Epicentre). Lysate 
(11 µl) was used for cDNA synthesis with the Revertaid cDNA 
synthesis kit (Fermentas) using oligo(dT) primers. qPCR reactions 
were performed in duplicate with the Universal ProbeLibrary 
system (Roche Applied Biosciences) according to the manufac-
turer’s instructions and analyzed using the manufacturer’s soft-
ware. Intron-spanning primers were designed with the Universal 
ProbeLibrary Assay Design Centre (Supplementary Table 3). All 
qPCR experiments were carried out in three biological replicates. 
Of all siRNAs, 68% caused a reduction in transcript level to <50%. 
For 47% of genes, three out of three siRNAs, and for 23% of genes, 
two out of three siRNAs reduced transcript levels to <50%.

Selection of siRNAs. The siRNAs for the combinatorial RNAi 
were selected from the Ambion siRNA library, which com-
prises three individual nonoverlapping siRNA designs for each 
gene (Supplementary Table 2). We chose two siRNA designs 
per gene on the basis of their qPCR results in the single knock-
downs. To avoid strong efficiency differences between the siRNA 
designs, we selected the two siRNAs with most similar mRNA 
levels upon knockdown. For 36 of 323 genes, incomplete qPCR 
analysis results were obtained, and we chose either the best-
performing design plus one randomly chosen design, siRNAs 
validated by the manufacturer or two randomly chosen designs  
(Supplementary Table 4).

Combinatorial RNAi. For the double knockdowns we plated  
2 × 2.5 µl of siRNAs (200 nM) in 384-well clear-bottom microscopy 
plates (BD Biosciences). First, we transferred aliquots of the siRNAs  
targeting the 323 target genes, distributing the two individual 
designs onto separate plates. Then we added one of the query 
siRNAs to each template plate, creating 25,840 RNAi combina-
tions per replicate. The combinatorial RNAi was performed in 
two biological replicates yielding a total of 51,680 combinato-
rial knockdowns. HCT116 cells were reverse transfected using 
Dharmafect 1 transfection reagent (Dharmacon) according to 
the manufacturer’s instructions. Briefly, 5 µl of siRNAs (200 nM) 
were incubated for 30 min with 15 µl of transfection mix (0.05 µl  
Dharmafect 1 in RPMI-1640 medium), and then 1,750 cells in  

30 µl McCoy’s medium were seeded into each well and incubated 
for 3 d at 37 °C.

Cell staining and imaging. Cell staining was performed using 
a Biomek FX robot with 384-well tip head. After 3 d cells were 
fixed and permeabilized with 5% paraformaldehyde (Sigma), 
0.2% Triton X-100 (Sigma) for 45 min at room temperature. 
To prevent nonspecific antibody binding, cells were incubated 
with 3% bovine serum albumin (Gerbu), 0.05% Triton X-100 for  
30 min. Nuclei, tubulin and actin were stained with 2 µg/ml 
Hoechst 33342 (Invitrogen), anti-tubulin antibody labeled 
with fluorescein isothiocyanate (Sigma, catalog number F2168, 
clone DM1A, 1:750) and 67 ng/ml phalloidin labeled with tetra
methylrhodamine isothiocyanate (Sigma) in blocking solution 
at 4 °C overnight. Cells were washed four times with PBS, and 
0.05% sodium azide (Sigma) was added for storage. Plates were 
sealed with aluminum sealing tape (Corning) and stored until 
imaged at 4 °C while protected from light. Fluorescence images 
were acquired with an InCell Analyzer 2000 (GE Healthcare) at  
10× magnification. To cover each well fully, we imaged four sites 
per well, resulting in a total of 620,160 images.

Image processing and feature extraction. Images were obtained 
from the InCell Analyzer 2000 as 12-bit TIFF images of size 2,048 
pixels × 2,048 pixels at three colors. The data set comprised  
5.6 terabytes. We adapted image segmentation and feature extraction  
methods from previous work29–31, using the R package EBImage32. 
Nuclei were segmented by adaptive thresholding with a window 
size of 10 pixels (corresponding to 7.4 µm) and subsequent mor-
phological filters. Nucleus segmentation was extended to the cell 
body by a Voronoi tessellation–based propagation algorithm33. 
Features for intensity, shape and texture were extracted for each 
cell from the DAPI channel using the nucleus segmentation and 
from the actin and tubulin channels using the mask of the cell 
body. Additional features were extracted from the joint distribu-
tion of the DAPI and the tubulin signals using the cell body mask. 
Features were summarized per experiment by the arithmetic 
mean over all cells. The number of segmented nuclei was used as 
a proxy for cell count. Features were transformed to a generalized 
logarithm (glog) scale as suggested by Huber et al.34.

Selection of nonredundant features. We first manually selected 
the count feature. To select further phenotypic features, we used a 
stepwise feature-selection algorithm. In each step, we performed a 
linear decomposition of each remaining feature into (i) the com-
ponent contained in the subspace spanned by the already selected 
features and (ii) the residuals. To assess the signal-to-noise ratio 
of the residual components, we computed the Pearson correlation 
between their biological replicates and chose the feature with the 
highest correlation. To define a stopping criterion, we noted that 
if all features were to contain random data, the distribution of 
correlation coefficients would be symmetric around 0. Therefore, 
we terminated the feature selection once the number of nega-
tively correlated candidate features exceeded that of positively 
correlated ones.

Genetic interaction scores and statistical analysis. Single-gene 
effects (main effects) were computed by robust fit of a linear 
combination of the two main effects for each glog-transformed 
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measurement with an L1-loss function. This model corresponds 
to a multiplicative model on the original feature scale18,35, in 
which the expected outcome for a non-interacting gene pair is 
the product of the two main effects. Following Horn et al.18, we 
limited the impact of potentially remaining subtle batch effects 
on our interaction estimates through the target-query experimen-
tal design: effects that influenced whole plates were absorbed by 
the query effect estimates, and effects associated with particular 
spatial positions in the plates (for example, subtle edge effects) 
were absorbed by the target effect estimates, leaving interaction 
estimates unaffected. Main effects were estimated for each siRNA 
reagent and independently for each phenotypic feature. Model fit 
was verified by small size, symmetry and lack of correlation of 
the fit residuals. To filter out experimental artifacts, we discarded 
measurements whose replicates differed by more than four times 
the median of the absolute value of all differences between the two 
replicates. Genetic interaction scores (π scores) were calculated 
as the difference (on the glog scale) between the observed pheno
type and the expected (non-interaction) value. To test scores for 
statistical significance, we used the two biological replicates and 
computed P values with the moderated t-test of the R package 
limma20. This test is adapted for settings with a small sample 
size but a large number of similar tests, as through the use of an 
empirical Bayes variance estimator it overcomes the problem of 
large variability that, for instance, the usual t-statistic has in this 
setting. P values were corrected for multiple testing by the method 
of Benjamini-Hochberg36, which controls the false discovery rate. 
A cutoff on the adjusted P values of 0.01 is applied to call genetic 
interactions (columns “padj” in Supplementary Table 5).

Validation of the interaction between SIN3A and RUVBL1. 
For validation with Dharmacon siRNA pools, HCT116 cells were 
reverse transfected as described above in four replicates. For double  
knockdowns, cells were transfected with 2 × 2.5 µl of siRNA pools 
(500 nM each); for single knockdowns, cells were transfected 
with 2.5 µl of siRNA pool (500 nM) targeting SIN3A or RUVBL1 
together with 2.5 µl of control siRNA (500 nM) targeting Renilla 
luciferase (RLuc). Catalog numbers of the used RNAi reagents are 

M-012990-00 (SIN3A), M-008977-00 (RUVBL1) and P-002070-
01-20 (RLuc). For the validation in HeLa cells, cells were reverse 
transfected in four replicates. For double knockdowns, the 2 × 2  
Ambion siRNA designs targeting RUVBL1 and SIN3A were com-
bined in all four possible ways using 2.5 µl (200 nM) of each 
siRNA. For single knockdowns, 2.5 µl of siRNAs targeting SIN3A 
or RUVBL1 were combined with 2.5 µl of nontargeting siRNA con-
trol (200 nM). Reverse transfection was performed as described 
above with the exception of using Lipofectamine RNAiMAX  
(Life Technologies) instead of Dharmafect 1 transfection reagent 
under otherwise unchanged conditions. After complex formation, 
1,250 cells in 30 µl DMEM were seeded into each well and incu-
bated for 3 d at 37 °C. Cell staining, imaging, image analysis and 
feature extraction were performed as described above. Baseline 
and main effects were computed from nontargeting controls and 
single-gene knockdowns for each siRNA design. π scores were 
computed using a log-additive model as above. P values were 
computed by a t-test over four replicates for HeLa cells.
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