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Tumour heterogeneity encompasses both the malignant cells and their microenvironment. While heterogeneity between indi-
vidual patients is known to affect the efficacy of cancer therapy, most personalized treatment approaches do not account for
intratumour heterogeneity. We addressed this issue by studying the heterogeneity of nodal B-cell lymphomas by single-cell
RNA-sequencing and transcriptome-informed flow cytometry. We identified transcriptionally distinct malignant subpopula-
tions and compared their drug-response and genomic profiles. Malignant subpopulations from the same patient responded
strikingly differently to anti-cancer drugs ex vivo, which recapitulated subpopulation-specific drug sensitivity during in vivo
treatment. Infiltrating T cells represented the majority of non-malignant cells, whose gene-expression signatures were similar
across all donors, whereas the frequencies of T-cell subsets varied significantly between the donors. Our data provide insights
into the heterogeneity of nodal B-cell lymphomas and highlight the relevance of intratumour heterogeneity for personalized

cancer therapy.

cancer entities has been catalogued over recent years, docu-

menting the range of tumour heterogeneity between indi-
vidual patients"”. In addition, it has long been appreciated that
the tumours in a patient consist of diverse but phylogenetically
related subclones’. Bulk-sequencing studies have been conducted to
infer the genetic spectrum of intratumour heterogeneity from the
variant-allele frequencies of somatic mutations’. Non-malignant
bystander cells represent another layer of heterogeneity, which
support tumour growth’ and affect the prognosis and response
to treatment?®.

While bulk genomic tissue profiling has only a limited abil-
ity to reconstruct the complex cellular composition of tumours,
single-cell DNA-"* and RNA-sequencing (scRNA-seq)’””* have
emerged as powerful tools to study intratumour heterogeneity and
reconstruct the full picture of malignant and non-malignant cells.
These technologies further enable researchers to identify rare cell
types, such as cancer stem cells"* and circulating tumour cells'>',

| he genomic and transcriptional landscape of many

or follow clonal dynamics during cancer treatment'”. Most of these
studies describe cell subpopulations on the transcriptional level but
their functional properties, such as their drug-response profiles,
remain largely unexplored.

To address this, we used B-cell non-Hodgkin lymphoma
(B-NHL) as a model disease entity to dissect intratumour hetero-
geneity at the transcriptional, genetic and drug-response levels.
The majority of B-NHLs grow in the lymph node compartment
and almost half of them are classified as diffuse large B-cell lym-
phomas (DLBCLs), follicular lymphomas (FL) or transformed
FLs'®". Despite effective immunochemotherapy treatment options,
relapses occur frequently”™*' and the response to single-agent tar-
geted therapy of these patients is surprisingly low?**. Intratumour
heterogeneity might be a key factor contributing to the thera-
peutic failure and low success rate of single-agent targeted thera-
pies’. Understanding the subclonal drug-response patterns would
therefore be an important asset for the design of more effective
personalized lymphoma therapies.
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To dissect the cellular composition of malignant lymph nodes,
we profiled single-cell transcriptomes from 12 different reactive or
B-NHL lymph-node biopsies and confirmed our findings by flow
cytometry in a larger cohort of 41 patients. Among the malignant
cells, we identified transcriptionally distinct malignant subpopula-
tions and further characterized them by ex vivo drug perturbation
and genome sequencing. This revealed insights into the intratu-
mour heterogeneity of B-NHLs and demonstrated substantially
different drug responses between malignant subpopulations in
the same patient.

Results

Study outline. We designed an experimental pipeline to dis-
sect the heterogeneity of non-malignant and malignant lymph
node-derived lymphocytes (Fig. 1a). The subpopulations iden-
tified by scRNA-seq were validated by flow cytometry using
distinguishing markers, and the subpopulations were finally func-
tionally interrogated in drug perturbation assays and further char-
acterized by whole-genome and/or -exome sequencing (WGS and
WES, respectively).

Dissecting the cellular composition of nodal B-cell lymphomas.
We assayed single-cell suspensions of 12 lymph node samples by
flow cytometry and scRNA-seq (Supplementary Table 1): four
germinal centre-derived DLBCLs, of which two were transformed
from FLs (DLBCL1, DLBCL2, tFL1 and tFL2), one non-germinal
centre-derived DLBCL (DLBCL3), four FL (FL1, FL2, FL3 and
FL4) and three reactive non-malignant lymph node (rLN) samples
(rLN1, rLN2 and rLN3).

We first verified that the lymph node-derived single-cell suspen-
sions were representative of the cellular composition (B and T cells)
of the lymphoma and its microenvironment. We used immuno-
histochemistry (IHC) to quantify the B- and T-cell frequencies in
sections of paraffin-embedded and formalin-fixed lymph nodes
(Extended Data Fig. 1a). In parallel, we determined the B- and
T-cell frequencies using flow cytometry and scRNA-seq (Extended
Data Fig. 1a,b). The frequencies of the B and T cells calculated using
scRNA-seq correlated perfectly with the frequencies determined
using flow cytometry (Pearson’s correlation coefficient (r)=0.97,
n=12; Fig. 1b) and IHC (r=0.92, n=7; Fig. 1¢).

To further distinguish malignant from non-malignant B cells,
we leveraged the fact that malignant B-cell populations express
only one type of immunoglobulin light chain—that is, either a
Kk or A light chain*’. We calculated the light chain ratio (x/A) for
each B cell based on the scRNA expression of the genes IGKC
(coding for the constant part of the k light chain) and IGLC2
(A light chain) and colour-coded this ratio in a ¢-distributed sto-
chastic neighbour-embedding (t-SNE) plot (Fig. 1d,e). In the
malignant lymph nodes, we could identify either non-malignant
and malignant or only malignant B-cell clusters (Extended Data
Figs. 2 and 3a). In contrast, reactive lymph node samples con-
tained only non-malignant B-cell clusters (see the Methods
section for details).

We further evaluated the frequencies of these B-cell subsets in
a larger cohort of 41 lymph node samples (Supplementary Table 1)
by flow cytometry, including the samples used for scRNA-seq. Both
approaches showed very similar frequencies of these cell sub-
sets (r=0.97, n=12; Extended Data Fig. 3a,b). The proportion of
malignant cells was highly variable across all of the studied disease
entities (chronic lymphocytic leukaemia (CLL), mantle cell lym-
phoma (MCL), DLBCL and FL), ranging from 14.6 to 97.2% with a
median of 76.8% (Extended Data Fig. 3c). This substantial cellular
heterogeneity complicates bulk-sequencing approaches of unsorted
lymph node samples and highlights the value of single-cell sequenc-
ing to simultaneously study the full spectrum of malignant and
non-malignant lymph node cells.
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Characterization of lymph node-derived T-cell populations.
B-cell non-Hodgkin lymphomas exhibit genetic immune escape
strategies that can be targeted using current therapeutic strate-
gies””, including checkpoint inhibitors? and bispecific antibod-
ies?. Notably, lymphoma cells can also orchestrate their tumour
microenvironment so that certain T-cell subsets support the
tumour cells”. Although these subsets have been extensively stud-
ied by immunophenotyping, their transcriptional heterogeneity in
B-NHL lymph nodes, in particular at the single-cell level, still needs
to be elucidated.

We combined the single-cell transcriptomes of T cells
from all 12 donors and jointly visualized them using Uniform
Manifold Approximation and Projection (UMAP)*. Many of the
well-established surface markers that are used to distinguish T-cell
subsets by flow cytometry are insufficiently expressed on the scRNA
level. We therefore chose unsupervised clustering to partition T cells
into transcriptionally distinct subsets, which were then annotated by
differentially expressed marker genes. All T cells from either reac-
tive or malignant lymph nodes distributed to only four major T-cell
subpopulations (Fig. 2a,b). Note that the clusters were not driven
by the patients or disease entity, which suggests that there was only
limited transcriptional heterogeneity across all donors. Apart from
conventional T helper cells (T}; CD4, IL7R, PLAC8 and KLF2) and
regulatory T cells (Tygg; CD4, IL2ZRA, FOXP3 and ICOS), we identi-
fied a third Ty cell population characterized by overexpression of
PDCDI (PD1), ICOS, CXCR5, TOX, TOX2 and CD200 (Fig. 2c and
Supplementary Table 2), suggesting a T-follicular-helper-cell (Tyy)
phenotype’'~*. In contrast to the diversity of Ty, cells, we observed
only one cluster of cytotoxic T cells (T'1ox; GZMK, CCL4/5, GZMA,
NKG7 and CD8A).

To study the variable frequency of these four T-cell subsets
(Fig. 2d) in a larger cohort, we analysed 40 lymph node samples of
DLBCLs, FLs, MCLs and CLLs by flow cytometry using the most
distinctive markers (CD3, CD4, CDS8, CD25, FoxP3, ICOS and
PD1; Fig. 2¢). The frequencies of all T-cell subsets derived from the
scRNA-seq correlated well with the frequencies determined using
flow cytometry (r=0.69, n = 10; Fig. 2¢). We found that T, cells were
significantly increased in FLs (two-sided Wilcoxon test, P=0.006;
Fig. 2f), which is in line with previous flow cytometry-based stud-
ies’. In addition, we found that the frequencies of Ty, cells
were significantly increased in malignant lymph nodes compared
with the reactive ones (two-sided Wilcoxon test, P values as
indicated in Fig. 2f).

Together, our findings indicate that B-NHLs shape their micro-
environment by influencing the recruitment of certain T-cell sub-
populations but have less effect on their transcriptional programs.

Identification of gene-expression signatures driving B-cell
heterogeneity by scRNA-seq. Next, we combined the single-cell
transcriptomes of B cells from all 12 donors and jointly visual-
ized them using UMAP (Fig. 3a,b). Clustering partitioned the
non-malignant B cells into two distinct subpopulations (CO and
Cl; Fig. 3a). Among the multiple genes that were differentially
expressed between these two subsets (Supplementary Table 3), we
found IGHM and CD?72 to be overexpressed in cluster C0, which
characterizes naive B cells”, and CD27 and IGHGI to be overex-
pressed in cluster C1, which characterizes memory B cells™.

Of the eight transcriptionally distinct clusters formed by the
malignant B cells (C2-C9; Fig. 3a), six exclusively contained
cells from only one donor (Fig. 3a,b), suggesting a higher degree
of inter-patient heterogeneity of malignant compared with
non-malignant B cells. A gene set enrichment analysis (GSEA)
revealed multiple cluster-specific gene sets (Fig. 3c,d), such as
germinal centre B cell-associated signatures, which were sig-
nificantly enriched in all clusters except cluster 6, which exclu-
sively contained malignant B cells from DLBCL3. This finding
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Fig. 1| Identification of cell types using scRNA-seq. a, Schematic overview of the study design. b,c, Lymph node-derived B and T cells were quantified

by scRNA-seq, flow cytometry and IHC of paraffin-embedded tissue sections (see Extended Data Fig. 1a). The frequencies of the B and T cells correlated
between scRNA-seq and flow cytometry (b), and scRNA-seq and IHC (c). The Pearson'’s correlation coefficients are given for n=12 (b) and 7 (¢)
biologically independent samples. d,e, lllustration of the strategy used to identify malignant B cells by reference to a representative sample (tFL1, 492 cells)
of a total of n=12 biologically independent samples. The legend applies to both panels. d, The scRNA expression profiles of the B cells were visualized by
t-SNE. The different B-cell clusters are circled and labelled. e, The IGKC fraction, IGKC +(IGKC +IGLC2), was calculated for each B cell. If the IGKC fraction
was >0.5, we classified a B cell as k*, and if this ratio was below 0.5, we classified the B cell as A*. The percentage of B cells expressing either k or A was
calculated per transcriptionally distinct B-cell cluster. The non-malignant healthy B-cell cluster contained approximately 50% k- and 50% A-expressing

B cells, whereas the tow malignant clusters (B1and B2) contained B cells homogeneously expressing the k light chain. B1, B-cell cluster 1; B2, B-cell cluster 2;

and hB, healthy B cells. The statistical source data are provided.

supports the IHC-based classification of DLBCL3 as a non-germinal
centre B-cell lymphoma subtype” (Supplementary Table 1).
Individual clusters were characterized by oncogenic transcrip-
tional programs, which indicated activation of oncogenic MYC and
STK33 signalling (Fig. 3d).

Inter-patient heterogeneity of B-cell lymphomas also comprises
their proliferative capacity, which can vary from very low in FLs to
very high in DLBCLs. The proportion of B cells in the S, G, and M
phases based on their scRNA profile (Extended Data Fig. 4a) cor-
related very well with the flow cytometry- and IHC-based staining

898

of Ki67 (scRNA-seq to flow cytometry, r=0.83; and scRNA-seq to
IHC, r=0.92; Extended Data Fig. 4b).

These results indicate that inter-patient heterogeneity of malig-
nant B cells, including their diverse proliferative activity, can be
captured by scRNA-seq and can be linked to lymphoma-specific
transcription signatures. However, non-malignant B cells had
similar transcriptional profiles across different donors.

Decoding the crosstalk between T cells and malignant B cells
within the lymph node microenvironment. From the results
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Fig. 2 | Transcriptional heterogeneity of lymph node-derived Tcells. a,b, T cells from n=12 biologically independent samples were combined and jointly
visualized using UMAP. The cells were coloured with respect to their cluster (a) or sample origin (b). ¢, Differentially expressed genes used to identify
the T-cell subsets: T;oy, conventional Ty, Ty, and T cells. The gene-expression values were scaled to the maximum of each row. d, Proportion of T-cell
subpopulations identified in each sample based on scRNA-seq. Note that the DLBCL1 sample is not shown here as only five T cells were identified in

this sample. e f, Lymph node cells derived from 40 different patients, including those passed to scRNA-seq, were characterized by flow cytometry. The
four different T-cell populations identified by scRNA-seq were distinguished as follows: Ty, CD3*CD4+ cells lacking the T, and Tres phenotype; Trox,
CD3*CD8* cells; Ty, CD3*CD4+ICOSHEPD1HEN cells; and Tges, CD3*CD4+FoxP3+ cells. e, Correlation of the frequencies calculated using flow cytometry
with those calculated using scRNA-seq. n=10 biologically independent samples. f, Frequencies of each subpopulation with regard to the sum of all T cells
for n=7 (CLL), 8 (DLBCL), 12 (FL), 4 (MCL) and 9 (rLN) biologically independent samples. The P values were calculated using a two-sided Wilcoxon's
test and corrected using Bonferroni's method. P values are only shown where P < 0.05 relative to the rLN group. The box plots show the minimum, first
quartile, median, second quartile and maximum. Outliers defined as values higher or lower than 1.5x the interquartile ranges from the median are shown

as individual dots. The statistical source data are provided.
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Fig. 3 | Gene-expression signatures driving B-cell heterogeneity. a-d, B cells

from n=12 biologically independent samples were combined and jointly

analysed. a,b, Cells were visualized using UMAP and coloured by shared nearest neighbour (SNN)-based clusters (a) or sample (b). ¢, A GSEA was

performed separately for each malignant cluster (C3-C9) versus all healthy B

cells (CO and C1). The four most-enriched gene sets per sample are shown.

The columns refer to the cluster annotation from a. The circles are coded by colour (nominal false-positive detection rate, FDR) and size (normalized
enrichment score, NES). Only gene sets with NES>1.5 are shown. The FDR and NES were calculated using the GSEA desktop application (see the Methods
section for details). d, Cells in the UMAP plot (see a,b) were coloured by the mean expression of enriched genes for four representative gene-expression
signatures. GC, germinal centre B cell. HM, hallmark. The statistical source data are provided.

mentioned earlier, we concluded that B-cell lymphomas shape their
microenvironment by modulating the frequency of different sub-
sets of lymphoma-infiltrating T cells. We next aimed to understand
through which potential ligand-receptor interactions malignant
B cells could benefit from their microenvironment. For this purpose,
we adopted the computational approach described by Vento-Tormo
et al.”’ to identify the most significant interactions between malig-
nant B cells and lymphoma-infiltrating T cells (Fig. 4).

This analysis suggested that malignant B cells could receive
costimulatory and coinhibitory signals from all four major T-cell

200

subsets via CD80/CD86-CD28 and CD80/CD86-CTLA, whereas
interactions via BCMA-BAFF, BAFF-R-BAFF and CD40-CD40LG
could predominantly be mediated by T}; and Ty cells. Significant
interaction scores for the IL4-IL4R and IL4-IL13RA1 interactions
were exclusively observed between Ty, and malignant B cells, pro-
viding further evidence that Ty cells represent the most important
source of IL4 in B-NHL"". This observation might be of clinical rel-
evance because the IL4-IL4R interaction is discussed as a poten-
tial resistance mechanism against Bruton’s tyrosine kinase (BTK)
inhibitors*»*. In agreement with what is known at present*,
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Fig. 4 | Cellular crosstalk in B-cell lymphomas in the lymph node microenvironment. Overview of the most significant ligand-receptor interactions across
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negative log,, of the adjusted P values. The P values were determined using a permutation test (see the Methods section for details on how the P values
were calculated). The interaction scores were calculated as the mean expression of molecule 1 (blue, y axis) in cell type A (blue, x axis) and the mean
expression of molecule 2 (black, y axis) in cell type B (black, x axis). Protein names instead of gene names were used for TACI (TNFRSF13B), BAFF-R
(TNFRSF13C), BCMA (TNFRSF17) and BAFF (TNFSF13B). The statistical source data are provided.

we also observed strong interaction scores for Ty via IL21-IL21R
with malignant B cells and via IL2-IL2R with other T-cell subsets.
This analysis supports our classification of Ty cells as one of the
four main T-cell subsets in the lymph node microenvironment and
reveals that each subset may provide a distinct panel of stimuli to
interact with malignant B cells.

Dissecting transcriptional intratumour heterogeneity using mul-
ticolour flow cytometry. Our next aim was to investigate different
layers of intratumour heterogeneity. Unsupervised clustering of the
scRNA-seq profiles of malignant and non-malignant B cells revealed
that all of the malignant samples were composed of at least two tran-
scriptionally distinct malignant subpopulations (Extended Data Fig. 5
and Supplementary Data 1). We aimed to validate scRNA-based
clusters at the cellular level to examine their biological and clini-
cal relevance. We therefore selected three samples (FL4, tFL1 and
DLBCL1) based on the availability of material for follow-up studies.
We inferred differentially expressed surface markers from the scRNA
profiles and first validated the distinction of scRNA-based clusters by
flow cytometry. In a second step, we cultured lymph node-derived
lymphocytes with 58 different drugs at five different concentrations
(Supplementary Table 4) and stained them with specific antibody
combinations to assess their drug-response profiles by flow cytom-
etry. In a third step, we sorted the subpopulations and performed
genome sequencing for each subpopulation (tFL1 and DLBCLI).

Verifying five transcriptionally distinct clusters in a FL sample.
Based on its scRNA profile, FL4 was composed of five different
B-cell clusters (C1-C5; Extended Data Fig. 6a). To validate all five
clusters at the cellular level, we stained the differentially expressed
surface markers CD44, CD24, CD22, CD27, and k and A light chains
(encoded by IGKC and IGLC2, respectively; Extended Data Fig. 6b).
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Using the ratio of IGKC and IGLC2 (see the Methods section for
details), we found non-malignant B cells in C1, A-restricted malig-
nant B cells in C2 and malignant B cells with only marginal expres-
sion of IGKC and IGLC2 in C3-C5 (Extended Data Fig. 6¢). The
pattern of light-chain expression could be perfectly comprehended
using flow cytometry (Extended Data Fig. 6d), enabling us to dif-
ferentiate C1 versus C2 versus C3, C4 and C5. Cluster C3 could
then be recognized by a high expression of CD44 (Extended Data
Fig. 6d,e). To further distinguish C4 and C5 among the CD44""
cells, we combined CD22, CD27 and CD24 and detected a subpop-
ulation with CD22Hieh, CD271sh and CD24°v, which corresponded
to the expression pattern of cluster C5 (Extended Data Fig. 6f). This
approach allowed us to proof all five scRNA-based clusters by flow
cytometry with comparable frequencies.

To assess the subpopulation-specific drug responses, we stained for
kand A light chains and focused on the two major populations (C2, A*
and C3-C5, k/A7). Although we did not observe differential responses
for the majority of the targeted drugs, we found that only the /A~
subpopulation was sensitive to chemotherapeutics (Extended Data
Fig. 6g). This observation might explain why this patient achieved
only a partial remission after chemotherapy treatment.

The indolent and aggressive components of transformed FLs
exhibit a distinct transcriptional, genomic and drug-response
profile. For the tFL1 sample, we detected three transcriptionally
distinct clusters of B cells (Fig. 5a,b). Two clusters exclusively con-
tained malignant B cells and one cluster contained non-malignant B
cells. Based on their gene-expression profiles, we assessed the pro-
liferative activity and observed that only one malignant cluster con-
tained cells in the S phase (Extended Data Fig. 7a), without cells in
the G, or M phases (Extended Data Fig. 7b). This suggests that this
cluster represents a proliferating and thus aggressive component
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of the transformed FL. The GSEA on the expression differences
between the two malignant clusters revealed that gene-expression
signatures associated with MYC, MTORC1 and the G,M transi-
tion*” were significantly enriched in the presumptively aggressive
subpopulation (Extended Data Fig. 7c—e).

Among the genes that were differentially expressed, we found
FCGR2B (Fig. 5a), which encodes the surface receptor CD32B, to be
exclusively expressed in the presumptively indolent subpopulation
(Extended Data Fig. 7f). Thus, we confirmed the existence of three
B-cell populations by flow cytometry (Fig. 5¢; see Supplementary
Fig. 1a for the gating strategy). CD10 was strongly positive in both
malignant B-cell populations (CD32"i" and CD32'"") but not in
non-malignant B cells.

As described earlier, we measured the ex vivo drug responses
separately for each subpopulation (Fig. 5d,e) and observed diverse
drug-response profiles. The BTK inhibitors—ibrutinib, acalabruti-
nib and tirabrutinib—and the immunomodulatory imide drugs—
pomalidomide and lenalidomide—were exclusively active in the
CD32'" subpopulation, whereas the histone deacetylase (HDAC)
inhibitors—panobinostat, romidepsin and vorinostat—were more
active in the CD32Mie" subpopulation.

We sorted the three B-cell subpopulations based on CD32 and
CD10 expression, and performed WES on each subpopulation as
well as on whole-tumour and germline samples. The copy-number
profiles of both malignant subpopulations were very different,
including exclusive aberrations of chromosomes 3, 4, 6, 10, 12, 15,
18 and X (Extended Data Fig. 7g). Only the CD32"" subpopula-
tion harboured a trisomy 12 (Fig. 5f), which was confirmed by
scRNA-seq data (Fig. 5g). Trisomy 12 has been associated with a
better response to B-cell receptor (BCR)-signalling inhibitors®,
which was consistent with our observation that this subpopulation
was more responsive to these drugs (Fig. 5d,e). We also detected
157 somatic single-nucleotide variants (SNV) in exonic regions,
of which 25 (15.9%) or 24 (15.2%) were exclusively detected in the
CD32Migh and CD32'" subpopulations, respectively (Fig. 5h and
Supplementary Table 5). However, the majority of somatic SNVs
were equally represented in both subpopulations, indicating a phy-
logenetic relationship. We compared the allele count of all exonic
SNVs between all three B-cell populations and did not detect
somatic SN'Vs in healthy B cells (Fig. 5i,j), which provides support
for the validity of our sorting approach.

Together, scRNA-seq allowed us to identify different subpopula-
tions in the same lymph node that were genetically and functionally
distinct in clinically relevant aspects.

A subpopulation-specific CNV of MYC drives a distinct
gene-expression and drug-response program. The DLBCL1 sample
was collected from a patient with a chemotherapy refractory disease

during progression but before re-treatment. Using scRNA-seq, we
identified two distinct clusters of malignant B cells, which exhibited a
high number of differentially expressed genes associated with diverse
cellular programs (Fig. 6a,b), such as BCR signalling (PRKCB and
NFKBII), cytokine signalling (LGALS9 and IFITM1), MAPK sig-
nalling (RGS13 and FBLN5) and antigen processing (PTPN22, SELL
and CD48). Among the genes that were differentially expressed, we
found CD48 and SELL (Extended Data Fig. 8a,b), which encode for
the surface markers CD48 and CD62L, respectively. Flow cytom-
etry analysis of CD48 and CD62L staining validated the two dis-
tinct subpopulations (CD48"&CD62L* and CD48"CD62L") at
the cellular level (Fig. 6¢). We measured the ex vivo drug responses
for each subpopulation again (Fig. 6d,e) and observed a strikingly
different drug-response profile between the two subpopulations:
BCR-signalling inhibitors (acalabrutinib, tirabrutinib, ibutinib,
duvelisib, idelalisib and entospletinib) and cyclin-dependent-kinase
inhibitors were exclusively effective in the CD48"*CD62L" subpop-
ulation, whereas bromodomain-and-extra-terminal-motif (BET)
inhibitors (I-BET-762 and OTXO015), nucleoside analogues (cyta-
rabine, fludarabine and cladribine) and vincristine were exclusively
efficacious in the CD48"*CD62L* subpopulation.

We sorted viable tumour cells based on the surface markers CD48
and CD62L (Supplementary Fig. 1b) and performed WGS on each
subpopulation as well as on whole-tumour and germline samples.
We detected a total of 240 non-synonymous SNVs located in exonic
regions (Supplementary Table 6); however, only one (0.4%) and five
(2.1%) SNV's were exclusively detected in the CD48*CD62L" and
CD48Me"CD62L* clusters, respectively (Fig. 6f). We further com-
pared the copy-number-variation (CNV) profiles of the two sub-
populations: the CD48"&"CD62L* cluster carried an additional copy
of MYClocated on chromosome 8q24 (Fig. 6g), which was reflected
by increased expression levels of MYC (Extended Data Fig. 8c).
Chromosome 14q harboured two copy number gains and one loss
in the CD48""CD62L* cluster (Fig. 6g). Moreover, chromosome X
exhibited a copy number gain of the p arm in the CD48""CD62L*
cluster and a copy number loss of the q arm in the CD48'*CD62L~
cluster (Fig. 6g).

Given that pathological activation of MYC renders cells
sensitive to BET inhibitors®*, we performed intracellular flow
cytometry-based staining of MYC at baseline and after an incuba-
tion of 24h with and without the two BET inhibitors I-BET-762 or
OTX015. We confirmed an increase in the levels of MYC expres-
sion of the CD48"e"CD62L* subpopulation at baseline (Fig. 6h
and Extended Data Fig. 8d) and, as expected, found that MYC was
downregulated following incubation with I-BET-762 (Extended
Data Fig. 8¢) and OTXO015 (Extended Data Fig. 8f) but not
following incubation with the BTK inhibitor ibrutinib (Fig. 6h and
Extended Data Fig. 8g).

A\

Fig. 5 | In-depth analysis of the sample tFL1. a,b, Single-cell transcriptomes of B cells derived from the tFL sample only (492 cells) were subjected

to SNN-based clustering. a, The heatmap illustrates the top-30 genes that were differentially expressed between all three identified clusters. The
gene-expression values were scaled to the maximum of each row. b, Clusters were colour-coded and visualized in t-SNE projections of the scRNA
expression profiles of B cells. ¢, Lymph node cells derived from tFLT were stained for viability, CD19, CD32 and CD10, and analysed by flow cytometry.

The gates highlight three CD19+* populations corresponding to the subclusters in b. The percentage of cells comprising these clusters is shown. The
experiment was repeated three times with similar results. d,e, Unsorted cells from the tFL1 sample were incubated for 48 h with 58 drugs, each at five
different concentrations, and stained as described above. Viability was normalized to the dimethylsulfoxide (DMSO) control for each subpopulation
separately. d, The mean difference of viabilities between the two malignant subpopulations are shown. White indicates an equal response, whereas

purple or green indicates a superior viability of the CD32"" or CD32'" subpopulations, respectively. e, Six representative subpopulation-specific

drug responses are shown: panobinostat, vorinostat and romidepsin (HDAC inhibitors); acalabrutinib (BCR-signalling inhibitor); and lenalidomide and
pomalidomide (immunomodulatory imide drugs). f, WES was performed on fluorescence-activated-cell-sorted CD32"e" and CD32%" subsets as well as
the non-malignant CD10~ B-cell subset. The line plot shows the estimation of the total copy number for chromosome 12 for all three sorted populations.

g, Density curves of single-cell gene-expression values for all genes located on chromosome 12 for each subpopulation. h-j, The scatter plots from the
WES show the allele frequency of the mutated allele for exonic SNVs in both malignant subpopulations (h), CD32%"* versus healthy B cells (i) and CD32"
versus healthy B cells (j). The shaded purple and green boxes highlight SNVs that are exclusive to one of the malignant B-cell subpopulations. The red dots
mark immunoglobulin-associated mutations. The legend at the top of the figure applies to all panels. The statistical source data are provided.
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In vivo re-treatment confirms ex vivo prediction of the
subpopulation-specific drug response. To exemplify the trans-
lational relevance of the subpopulation-specific drug responses,
we performed WES of DLBCL1 during the second relapse after
re-treatment with high-dose cytarabine. Based on ex vivo drug
perturbation we had predicted that the CD48"s"CD62L", but not
the CD48'"CD62L", subpopulation would respond to cytarabine
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(Fig. 6d). We compared several synonymous SNVs exclusive to the
CD48"e"CD62L* subpopulation before re-treatment and during
the second relapse, and observed that the cytarabine-sensitive sub-
population was successfully eradicated (Fig. 6i). Due to the lack of
sufficiently exclusive SN'Vs in the resistant subpopulation, we took
advantage of the loss of heterozygosity (LOH) on chromosome Xq
(Fig. 6g) to determine the aberrant fraction of cells harbouring a loss
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of Xq before and after re-treatment. We found that the fraction of subpopulations and their specific drug-response profile for
chemotherapy-resistant cells, harbouring the loss of Xq, increased  personalized cancer treatments.
from 72 to 93% (see the Methods section for details).

In summary, we dissected the intratumour heterogeneity of the  Discussion
DLBCLI sample at the transcriptional, genomic and drug-response  In this study we combined scRNA-seq and flow cytometry to
levels. This example highlights the clinical relevance of tumour investigate the intratumour heterogeneity of nodal B-NHLs at the
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Fig. 6 | In-depth analysis of the sample DLBCLI1. a,b, Single-cell transcriptomes of B cells derived from the DLBCL1 sample only (3,114 cells) were
subjected to SNN-based clustering. a, Top-40 differentially expressed genes. The gene-expression values were scaled to the maximum of each row.

b, Clusters were colour-coded and visualized in t-SNE projections of the scRNA expression profiles. ¢, DLBCL1-derived cells were stained for viability, CD19,
CD48 and CD62L (SELL), and analysed by flow cytometry. The gating recapitulates the subpopulations identified in a and b. The experiment was repeated
three times with similar results. d,e, DLBCL1-derived cells were incubated for 48 h with 58 drugs, each at five different concentrations, and stained as
described in c. Viability was normalized to the DMSO controls for each subpopulation separately. d, Six representative subpopulation-specific responses
are shown: I-BET-762 and OTXO015 (BET inhibitors); ibrutinib and duvelisib (BCR-signalling inhibitors); and cytarabine and cladribine (chemotherapy).

e, Mean difference of viabilities between the two subpopulations. White indicates an equal response, whereas purple and green indicate a superior
viability of the CD48"e"CD62L* and CD48°"CD62L- subpopulations, respectively. f.g, WGS was performed on both sorted subpopulations. f, Allele
frequencies of the mutated allele for non-synonymous exonic (black), immunoglobulin-associated exonic (red) and synonymous or intronic (grey) SNVs.
The shaded purple and green boxes highlight SNVs exclusive to either of the subpopulations. g, Estimation of the total copy numbers for chromosome
824 (top left), 14 (top right) and X (bottom) for both clones. h, DLBCL1-derived cells were incubated with DMSO, I-BET-762 or ibrutinib. The cells were
stained for viability, CD19, CD3, CD48, CD62L and MYC or the respective isotype control at baseline and after 24 h. The histograms show the fluorescence
intensity of MYC at baseline and after 24 h, as indicated. i, Variant-allele frequencies of 21 independent SNVs in both subpopulations and whole-tumour
samples before and after high-dose cytarabine treatment in vivo. The P value was calculated using a two-sided Wilcoxon test. The statistical source data

are provided.

transcriptional, genetic and drug-response levels. Our analysis
revealed the coexistence of up to four transcriptionally distinct sub-
populations of malignant cells in individual B-NHL samples. This
result recapitulates similar observations in FL*!, multiple myeloma**
and other cancer entities”'**’. We went further and established a
straightforward strategy to prove the coexistence of up to four dif-
ferent tumour subpopulations at the cellular level. Moreover, we
observed that tumour subpopulations in the same lymph node
responded strikingly differently to targeted compounds and che-
motherapeutics, which parallels observations in acute myeloid leu-
kaemia with subclonal FLT3 mutations™. In addition, our approach
could even predict the in vivo treatment sensitivity and resistance of
tumour subpopulations in an example patient. Although we applied
our approach to a limited number of malignant samples, it high-
lights the importance of identifying rational combinations of cancer
drugs that effectively target all coexisting tumour subpopulations to
avoid the outgrowth of resistant tumours.

Our approach enabled us to directly identify genetic factors that
underlie the transcriptional and drug-response differences between
subpopulations. This distinguishes our work from a previous study
of FL, which compared allele frequencies of bulk WES with the size
of the subpopulations identified by scRNA-seq’'. The authors found
a correlation between genomic alterations and subclonal fractions
and concluded that somatic mutations are associated with tran-
scriptional differences. While this study provided only indirect evi-
dence, we physically sorted tumour subpopulations and performed
DNA sequencing separately for transcriptionally distinct subpopu-
lations. We observed two different scenarios regarding somatic
mutations: in the DLBCLI sample we identified almost no somatic
SNVs to be exclusive for one or the other subpopulation, whereas
in the tFL1 sample we found up to 15% exclusive somatic SNVs in
each subpopulation. We further compared the CNV profiles of the
same tumour subpopulations and found that all subpopulations
harboured significantly different CNV profiles, suggesting that
copy number alterations represent an important layer of genetic
heterogeneity. Although our results support the general idea that
genetic events drive subpopulation-specific differences such as drug
response, they also highlight the difficulty to predict drug responses
based only on genome sequencing in clinical practice.

Exploring the heterogeneity of the immune microenvironment
in B-NHLs has the potential to better stratify patients for treatment
with immunotherapies. Here we identified four major transcription-
ally distinct T-cell subpopulations: T oy, Ty, conventional Ty and
Ty cells. Although these subsets displayed limited transcriptional
heterogeneity across donors and disease entities, their frequencies
varied significantly, suggesting that B-NHLs shape their microen-
vironment by regulating the recruitment of different T-cell subsets.
This observation might be of clinical relevance because B-NHLs

NATURE CELL BIOLOGY | VOL 22 | JULY 2020 | 896-906 | www.nature.com/naturecellbiology

with very few infiltrating T cells have been reported to respond less
well to immunotherapies™.

Despite the rather small number of patients with B-NHL that
were analysed, our study is of high clinical relevance. We demon-
strated that the prospective identification of pre-existing transcrip-
tionally distinct malignant subpopulations might be of diagnostic
value to detect difficult-to-treat tumour subpopulations. In addi-
tion, our research establishes scRNA-seq as a key technology for
precise molecular profiling of relapsed and refractory nodal B-cell
lymphomas and facilitates the design of molecularly informed diag-
nosis and treatment strategies.
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Methods

Patients samples and lymph-node processing. Our study was approved by

the Ethics Committee of the University of Heidelberg. Informed consent was
obtained in advance. The study is compliant with all of the relevant ethical
regulations regarding research involving human participants. The lymph nodes
were cut into small pieces immediately after excision and placed in RPMI medium
(Gibco) supplemented with 10% fetal bovine serum (FBS; Gibco), penicillin

and streptomycin (Gibco) at a final concentration of 100 Uml™" and 100 ugml~',
respectively, and L-glutamine (Gibco) at a final concentration of 2mM. After
filtering with a 40-um strainer, the cells were washed once with PBS (Gibco), put
in RPMI medium (Gibco) supplemented with 20% FBS (Gibco) and 10% DMSO
(Serva) and then cryopreserved in liquid nitrogen until further analysis.

Quantification of IHC staining. Formalin-fixed lymph node tissues were
processed through the routine IHC pipeline of the hospital and thereby stained

for CD3, PAX5 and Ki67 (all Ventana). After completion of the diagnostics, the
corresponding slides were scanned for a subset of patients (1n="7). To quantify

the frequencies of B and T cells, the open source software QuPath (v0.1.2) was
used for PAX5-, CD3- and Ki67-stained slides according to the recommended
workflow™. Following detection of about 100,000 cells per slide, the measurements
were exported and further analysed using R. We visualized the intracellular signal
of diaminobenzidine staining of all detected events in a histogram. We observed
two clear peaks in the PAX5 and CD3 staining of all samples and set a threshold
between the two peaks. Cells with an intracellular CD3 or PAX5 signal greater than
this threshold were regarded as T or B cells, respectively. The proportion of Ki67*
cells was obtained from routine pathology reports.

Surface and intracellular staining by flow cytometry. As described earlier, lymph
node-derived cells were thawed and stained for viability using a fixable viability
dye €506 (Thermo Fisher Scientific) and for different surface markers depending
on the experimental set-up. The following surface antibodies were used: anti-CD3-
PerCP-Cy5.5, anti-CD3-APC, anti-CD19-BV421, anti-k-PE, anti-k-FITC,
anti-A-PE-Dazzle, anti-CD22-APC, anti-CD24-BV785, anti-CD27-PE-Cy7,
anti-CD32-PE, anti-CD44-PE, anti-CD48-PE, anti-CD62L-PE-Cy7, anti-CD10-
APC-Cy7, anti-CD4-AF700, anti-CD8-FITC, anti-PD1-BV421 and anti-ICOS-
PE-Dazzle (all BioLegend). In the case of subsequent intracellular staining, the
cells were fixed and permeabilized with the intracellular fixation/permeabilization
buffer set (Thermo Fisher Scientific) and stained with anti-MYC-AF647 (Thermo
Fisher Scientific), anti-FoxP3-AF647 (BD Biosciences) or the adequate isotype
controls (Thermo Fisher Scientific, BD Biosciences). The cells were then analysed
using an LSR Fortessa (BD Biosciences) and FACSDiva (BD Biosciences, version 8).
The gating strategy for the T-cell subsets is illustrated in Supplementary Fig. 2.

Estimating the proportions of malignant and non-malignant B cells by flow
cytometry. Staining for the expression of light chains (k and }) is a well-established
tool for the identification of the accumulation of light chain-restricted malignant

B cells””. Lymph node-derived cells were stained as described earlier. If a
population was comprised of more than 80% k* or A* B cells, we regarded this
population as light chain-restricted and therefore malignant. We further assumed
that the ratio of k* versus A* B cells among the possible remaining non-malignant B
cells would still be balanced. Therefore, there must be roughly the same proportion
of non-malignant B cells among those carrying the restricted type of light chain.
This results in the following formula to estimate the proportion of malignant cells:

Proportiony s malignant ¥ PTOPOrtiong o regtrictea — PTOPOTONg coig 1ot restricted

In addition, cells without detectable expression of k or A light chains at
the protein level were regarded as malignant cells because a loss of light-chain
expression has not been observed in non-malignant lymph nodes™.

Single-cell sample preparation and scRNA-seq. After thawing, cells were washed
to remove DMSO as quickly as possible. We used a Dead cell removal kit (Miltenyi
Biotec) for all samples to achieve a viability of at least 90%. The preparation of the
single-cell suspensions, synthesis of complementary DNA and single-cell libraries
were performed using a Chromium single cell v2 3’kit (10x Genomics) according
to the manufacturer’s instructions. Each was sequenced on a single NextSeq 550
lane (Illumina).

Subpopulation-specific drug screening. Five different concentrations of 58
different drugs (Supplementary Table 4) and a suitable number of DMSO
controls were prepared in 384-well plates. A DMSO concentration of 0.2% was
used throughout. Lymph node cells were thawed in a water bath at 37°C and
the DMSO-containing freezing medium was removed as quickly as possible to
reduce the cytotoxic effects. The lymph node cells were then rolled for 3h in
RPMI medium supplemented with penicillin and streptomycin (Gibco) at a final
concentration of 100 U ml™" and 100 pg ml™, respectively, L-glutamine (Gibco)
at a final concentration of 2mM and 10% human AB male serum (Sigma). The
cells were seeded at a cell count of 50,000 cells in 50 ul per well. After 48h, the
cells were washed once with staining buffer (PBS (Gibco) supplemented with
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1% FBS and 0.5% EDTA (Sigma Aldrich)). The cells were subsequently stained
with Fixable viability dye e506 (Thermo Fisher Scientific), anti-CD3-APC,
anti-CD19-BV421, and anti-CD48-PE, anti-CD62L-PE-Cy7 or anti-k-FITC,
anti-A-PE-Dazzle, anti-CD10-APC-Cy?7, anti-CD27-PE-Cy7, anti-CD32-PE (all
BioLegend). After staining, the microtiter plate was washed twice with staining
buffer. Next, the cells were fixed using paraformaldehyde at a final concentration
of 2% for 15 min at room temperature and washed with staining buffer. The
fixed cells were analysed using an LSR II and FACSDiva (BD Biosciences,
version 8) equipped with a high throughput sampler system (BD Biosciences).
Approximately 5,000-10,000 events were recorded per well. The flow cytometry
data were analysed using the FlowJo software (Tree Star). The gating strategies
are illustrated in Supplementary Fig. 1. We ruled out that significant up- or
downregulation of subpopulation-discriminating surface antigens confound
subpopulation-specific drug-response assessment by evaluating the fluorescence
intensity of the corresponding markers before and after drug treatment
(Supplementary Fig. 3).

FACS of B-cell subpopulations. Lymph node cells were stained as described
earlier. Sorting was performed using a FACS Aria Fusion (BD Biosciences).

We sorted either for e506-CD3-CD19*CD48-CD62L" and €506 CD3~
CD19*CD48+*CD62L* cells (DLBCL1) or e506-CD3-CD19*CD10-, ¢506-CD3"
CD19*CD10*k*CD32"*" and €506-CD3-CD19*CD10*k*CD32"¢" cells (tFL). The
gating strategies are illustrated in Supplementary Fig. 1. All of the relevant fractions
were analysed post sorting to confirm a purity of at least 95%.

WGS and WES. DNA was extracted using a DNeasy mini kit (Qiagen) according
to the manufacturer’s protocol, followed by quality control using gel electrophoresis
and a TapeStation 2200 system (Agilent). Samples were prepared either for WGS

or WES, as previously described”. Exome capturing was performed using the
SureSelect human all exon V5 in-solution capture reagents (Agilent). If the samples
were destined for WES on an Illumina HiSeq 2500 instrument, 1.5 pg genomic
DNA was fragmented to an insert size of 150-200bp using a Covaris S2 device,
and 250 ng of Illumina adaptor-containing libraries were hybridized with exome
baits at 65 °C for 16 h. If the samples were destined for WES on an Illumina HiSeq
4000 instrument, 200 ng genomic DNA was fragmented to an insert size of 300 bp
using a Covaris LE220 or E220 device, and 750 ng of adaptor-containing libraries
were hybridized with exome baits at 65 °C for 16 h. If the samples were destined for
WGS on an Illumina HiSeq X instrument, 100 ng genomic DNA was fragmented
to an insert size of 450 bp using a Covaris LE220 or E220 device, and libraries were
prepared using the TruSeq nano kit (Illumina). Paired-end sequencing was carried
out according to the manufacturer’s recommendations on all platforms, yielding
read lengths of 101 bp (HiSeq 4000) or 151bp (HiSeq X).

Processing of scRNA-seq data. The Cell Ranger analysis pipeline (v2.1, 10x
Genomics) was used to demultiplex the raw base-call files and convert them into
FASTQ files. The FASTQ files were aligned to the reference genome (hg38) and
filtered. The final number of cell barcodes, unique molecular identifiers (UMI)
per cell, median genes and sequencing saturation are summarized in
Supplementary Table 7.

Filtering and normalization of scRNA-seq data. The R package Seurat® (v2.3.3)
was used to perform quality control and normalization. The gene count per cell,
UMI count per cell and percentage of mitochondrial and ribosomal transcripts were
computed using the functions of the Seurat package. Genes that were expressed in
three or fewer cells were excluded from the downstream analysis. Libraries with a
percentage of mitochondrial transcripts greater than 5%, along with those with fewer
than 200 genes were filtered out before further analysis. As aggressive lymphomas
displayed higher gene and UMI counts, the upper limit was set with regard to each
sample. After the removal of low-quality cells, we analysed the scRNA-seq profiles
of 35,957 cells with an average sequencing depth of approximately 1,400 genes

per cell. Counts were adjusted for cell-specific sampling (‘normalized’) using the
LogNormalize function with the default scale factor of 10,000.

Assessing the cell-cycle state using scRNA-seq data. The cell-cycle state was
assessed using the gene set and scoring system described by Tirosh and colleagues’.
Briefly, the S and G,M scores were calculated based on a list of 43 S phase-specific
and 54 G, or M phase-specific genes. The calculation of the actual scores was
performed using the CellCycleScoring function of the Seurat R package.

Analysis of ligand-receptor interactions in scRNA-seq data. We used the
CellPhoneDB database™ as the basis for potential cell-cell interactions but expanded
the list to include important B- to T-cell interactions (Supplementary Table 8).

To assess the significance of each interaction, we adapted a statistical framework
recently described by Vento-Tormo and colleagues* to our purpose. Importantly,
we considered only genes that were expressed in 5% of at least one cell type.

Briefly, we performed pairwise comparisons between the different T- and B-cell
subtypes for each ligand-receptor pair and sample. For each combination of two
different cell types and each ligand-receptor pair, we permuted the cluster labels
of cells at least 1,000 times and determined the mean interaction score (mean
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expression of ligand in cell type A times the mean expression of receptor in cell
type B). A P value was determined by calculating the proportion of permuted
interaction scores that were by hazard higher than the actual interaction score. All
interactions were calculated sample-wise. To determine which interactions were
most relevant across different samples, we calculated the mean interaction scores
and combined the different P values using the Fisher’s method. The P values were
then corrected using the Benjamini-Hochberg method. The R code is available on
our GitHub repository (see the Code availability section).

Combining data from different samples and batch correction. After the
identification of the different cell types, the datasets were split into non-B cells

or B cells using the SubsetData function. The respective subsets were then
combined using the MergeSeurat function. Putative batch effects between two
runs were corrected using the mutual-nearest-neighbours technique®, which was
implemented in the scran Bioconductor package (v1.10.2).

Clustering and dimensionality reduction techniques. SNN-based clustering,
t-SNE and UMAP visualization were performed using the FindClusters, RunTSNE
and RunUMAP functions within the Seurat package®. Each of these were
performed on the basis of a principal component analysis, which was performed
using the RunPCA function of the Seurat package. The same parameters were
applied to all samples. Because it is significantly faster than t-SNE and better
preserves aspects of global structure in larger datasets™, UMAP was used
instead of t-SNE for combined datasets. Genes that were differentially expressed
between the clusters were identified using the FindMarkers or FindAllMarkers
functions in the Seurat package®. Genes that were differentially expressed
between malignant B-cell clusters can be browsed interactively using an html file
(see Data availability).

GSEA. Gene set enrichment analysis was performed using the GSEA java desktop
application®>*’ and the Molecular Signatures Database (MSigDB, v6.2) provided
by the Broad Institute®**. Genes that were differentially expressed between two
groups were used to determine significantly enriched gene sets.

WES and WGS data processing. Alignment of sequencing read pairs and variant
calling were performed as recently described®. Briefly, reads were mapped to

the human reference genome (hg19) using bwa-mem (version 0.7.8, minimum
base quality threshold set to zero (-T 0), remaining settings left to default)®°.
Subsequently, reads were coordinate-sorted using bamsort (compression

option set to fast) and duplicate read pairs were marked using
bammarkduplicates (compression option set to best; both part of

biobambam package version 0.0.148).

The SNVs and indels in matched tumour normal pairs were identified
using the internal DKFZ variant calling workflows based on samtools/bcftools
0.1.19 with additional custom filters (optimized for somatic variant calling by
deactivating the pval-threshold in bcftools) and Platypus 0.8.1, respectively, as
described previously”. Gene annotation of variants was done using Annovar®’.
The variants were annotated with dbSNP141, 1,000 Genomes (phase 1), Gencode
mapability track, UCSC High Seq Depth track, UCSC Simple-Tandem repeats,
UCSC Repeat-Masker, DUKE-Excluded, DAC-Blacklist and UCSC Selfchain.
These annotation tracks were used to determine a confidence score for each variant
by a heuristic punishment scheme and only high-confidence variants were kept
for further analysis. In addition, variants with strong read biases according to the
strand bias filter were removed.

Genomic structural rearrangements were identified using the SOPHIA
algorithm (unpublished, source code available at https://bitbucket.org/utoprak/
sophia/). Briefly, supplementary alignments produced by bwa-mem were used
as indicators of potential underlying structural rearrangements. Candidates
were filtered by comparing them to a background control set of sequencing data
obtained using normal blood samples from a background population database of
3,261 patients from published The Cancer Genome Atlas and International Cancer
Genome Consortium studies as well as both published and unpublished studies of
the German Cancer Research Center (DKFZ).

Allele-specific CNVs were detected using ACEseq (allele-specific copy number
estimation from WGS)“* for the WGS data and CNVKkit for the WES data®. ACEseq
determines absolute allele-specific copy numbers as well as tumour ploidy and
tumour-cell content based on coverage ratios of tumour and control as well as
the B-allele frequency of heterozygous single-nucleotide polymorphisms (SNPs).
Structural rearrangements called by SOPHIA were incorporated to improve
genome segmentation.

Multi-tumour comparison. To compare multiple tumour samples from the same
donor, every SNV position was determined using samtools mpileup 1.6 for each
sample. The variant-allele fraction at each of these SNV positions was determined
by calculating the ratio between the number of variant reads and the total coverage
at that position. To correct the variant-allele fraction for actual tumour-cell
content, a scaling factor comprising ploidy and total copy number (TCN) estimates
obtained from ACEseq/CNVKkit was incorporated. Specifically, the scaling factor
was obtained as the ratio between the purity-corrected number of alleles in the

tumour (TCNypeur X PULitY umour) and purity-corrected total number of alleles in the
sample ((TCNymour X PULIY umour) + 2 X (1 = PULitYygmour))-

Aberrant-cell-fraction estimation from LOH. To determine the aberrant-cell
fractions, the minor-allele frequency (MAF; the ratio between the number of
reads of the minor allele and total coverage at a given position) of a SNP was
estimated for selected regions harbouring an LOH or a copy-number-neutral LOH
(CN-LOH) in the tumour sample. Information on SNP location was received
from matched-control SNV calling. To select heterozygous SNPs, only SNPs with
a MAF > 0.3 in the control were retained. Subsequently, the MAF values of the
selected SNP were calculated for the tumour samples. For exome samples, only
SNPs within the targeted capture regions were kept. The mean of the respective
tumour MAF values was calculated and the aberrant cell fraction (ACF) was
estimated as follows:

ACFox-1on = 1 — 2x mean(MAF); ACF on = 1 22men(itas)
Statistics and reproducibility. Statistical analyses were performed using R. The
source data underlying statistical tests are available in the source data files linked
to the figures.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The WGS and WES data have been deposited at the European Genome-phenome
Archive (EGA). The EGA study accession ID is EGAS00001004335. The
scRNA-seq data that support the findings of this study have been deposited

in heiDATA under accession code VRJUNYV. The single-cell expression data

of merged B- and T-cell UMAP plots (Fig. 2a,b and Fig. 3a,b) are available for
easy-to-use interactive browsing at https://www.zmbh.uni-heidelberg.de/Anders/
scLN-index.html. Genes that were differentially expressed between B-cell clusters
can be browsed in an interactive html file (Supplementary Data 1). All other data
supporting the findings of this study are available from the corresponding author
on reasonable request.

Code availability
The R codes used for data analysis are available at our GitHub repository without
further restriction (www.github.com/DietrichLab/scLymphomaExplorer).
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Extended Data Fig. 1| Classification of B and T cells by scRNA-seq. a) Representative lymph node sample demonstrating how lymph node-derived

B and T cells were classified by scRNA-seq (CD79B vs. CD3), flow cytometry (CD19 vs. CD3), or immunohistochemistry (PAX5 vs. CD3). Frequencies of

B and T cells were determined for each approach in 12 (scRNA-seq, flow cytometry) or 7 (immunohistochemistry) biologically independent samples and
correlated pairwise with each other (see main Fig. 1b and Fig. 1c). b) ScCRNA-seq data of 12 biologically independent lymph node samples were subjected to
SNN-based clustering and visualized by t-SNE. Each t-SNE represents one individual sample as indicated. Different B cell or T cell clusters are illustrated by

different shades of green or blue, respectively. SNN: Shared-nearest-neighbour. See Source Data Extended Data Fig. 1.
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Extended Data Fig. 2 | Classification of malignant versus healthy B cells by means of kappa and lambda light chain expression at the scRNA level.
scRNA-seq data of 12 independent lymph node samples were subjected to SNN-based clustering and visualized by t-SNE. Each t-SNE represents one
individual sample as indicated. Cells are coloured by light chain kappa fraction IGKC/(IGKC + IGLC2) of each single cell to demonstrate light chain
restriction of each cluster. Non-B cells are coloured in grey. The sample DLBCL1 showed only marginal light chain expression on single cell RNA level.
Therefore, these cells were regarded as malignant cells (see Method section for details). The same is true for the larger cluster of sample FL4. SNN:

Shared-nearest-neighbour. See Source Data Extended Data Fig. 2.
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Extended Data Fig. 3 | Frequencies of T cells, healthy B cells and malignant B cells perfectly correlate between flow cytometry and scRNA-seq.

a) Stacked bar graph of the relative frequencies of malignant B cells (B), T cells (T), healthy B cells (hB) and myeloid cells (Other) calculated on the basis
of scRNA expression profiles. Shown are N=12 biologically independent samples. b) Lymph node derived cells from those samples passed to scRNA-seq
(A) were stained for viability, CD19, CD3, kappa light chain and lambda light chain. The proportion of healthy (hB) and malignant B cells (B) were
estimated based on the ratio of light chain restricted CD19+* tumour cells and CD19* non-tumour cells (malignant B cells = light chain restricted

B cells - non-restricted B cells). T cells (T) refer to CD3*CD19- cells, whereas Other refers to CD19-CD3- cells. Pearson'’s correlation coefficients (r) are
given. ¢) Lymph node derived cells were stained and analysed as described in B. Shown are the frequencies for each subpopulation for n=9 (rLN), N=4
(MCL), N=11(FL), N=9 (DLBCL) and N=7 (CLL) biologically independent samples. Box plots show the minimum, first quartile, median, second quartile
and maximum. Outliers defined as values higher or lower than 1.5 interquartile ranges from median are shown as individual dots. rLN: Reactive lymph
node. MCL: Mantle cell lymphoma. FL: Follicular lymphoma. DLBCL: Diffuse large B cell lymphoma, CLL: Chronic lymphocytic leukaemia. See Source Data
Extended Data Fig. 3.
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Extended Data Fig. 4 | Proliferative capacity is preserved at the scRNA level and correlates with immunohistochemical and flow cytometry-based
staining of Ki67. a) Dot plots show G,M and S score for the B cells of four representative samples. Cells with positive G,M or S score were marked as
proliferating (please see method section for details). b) The proportion of proliferating cells based on scRNA-seq (A) was correlated with the percentage
of Ki67+ cells determined either by flow cytometry (orange) or immunohistochemistry (green). R values represent Pearson correlation coefficients. N=12
biologically independent samples are shown. See Source Data Extended Data Fig. 4.
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Extended Data Fig. 5 | intratumour heterogeneity of malignant B cells. a-i) SCRNA expression profiles of malignant and non-malignant B cells only were
subjected to SNN-based clustering and visualized by t-SNE. Shown are 9 biologically independent samples, whereby each t-SNE represents one individual
sample as indicated. Cells were coloured by cluster. SNN: Shared-nearest-neighbour. See Source Data Extended Data Fig. 5.
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Extended Data Fig. 6 | Dissecting four distinct subpopulations of malignant B cells in FL4 sample by means of scRNA-seq-informed flow cytometry.

a) ScRNA expression profiles of B cells from the FL4 sample only (2367 cells) were subjected to SNN-based clustering and visualized by t-SNE.

b) Heatmap shows a selection of differentially expressed surface markers used for cluster differentiation. Gene expression values were scaled to the
maximum of each row. ¢) T-SNE plot of panel A coloured by the light chain kappa fraction IGKC/(IGKC + IGLC2) of each single cell for FL4 sample only. C1
contains cells either expressing IGKC or IGLC2 predominantly (benign B cells), C2 contains only cells expressing predominantly IGLC2, whereas C3 to C5
hardly express both IGKC and IGLC2. d-f) Cells derived from sample FL4 were stained for viability, CD3, CD19, kappa, lambda, CD44, CD24, CD22 and
CD27. Shown is the stepwise gating strategy to comprehend the scRNA-seg-based clusters of panel A. g) Lymph node derived cells from the FL4 sample
were incubated for 48 hours with 58 different drugs and 5 concentrations. Cells were stained for viability, CD3, CD19, kappa, lambda and CD27. Viability
was normalized to DMSO controls for each subpopulation separately. Shows are only those drugs with significantly differential drug response between the
two subpopulations. SNN: Shared-nearest-neighbour. DMSQO: Dimethyl sulfoxide. See Source Data Extended Data Fig. 6.
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Extended Data Fig. 7 | Intratumour heterogeneity of tFL1 characterized by differential cell cycle states, gene expression signatures and copy number
alterations. a, b) SCRNA expression profiles of B cells from the tFLT sample only (492 cells) were subjected to t-SNE and coloured by S-Score (a) or
G,M-Score (b, see Methods section for details). c-e) Gene set enrichment analysis was performed between CD32%" and CD32"i" cluster. Shown are
enrichment plots for hallmark MYC targets (¢), MTORCI signalling (d) and hallmark G,M targets (e). Given are the false-positive detection rate (FDR)
and the normalized enrichment score (NES). FDR and NES were calculated using GSEA desktop application (see Method section for details). f) T-SNE as
shown in panel A/B was coloured by FCGR2B expression. g) Line plot shows cluster-specific total copy number estimation for all chromosomes inferred
from whole exome sequencing. See Source Data Extended Data Fig. 7.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Intratumour heterogeneity of DLBCL1 sample. a-c) ScRNA profiles of malignant B cells from the DLBCL1 sample only (3114 cells)
were subjected to t-SNE and coloured by CD48 (a), SELL (b) and MYC (c) expression. d) DLBCL1 derived lymph node cells were stained for viability, CD19,
CD3, CD48, CD62L and MYC or respective isotype control. Histograms show fluorescence intensity of MYC for isotype control, T cells, CD48H&e"CD62L+
and CD48%“CD62L- subpopulations. Experiment was repeated three times with similar results. E-G) DLBCL1 derived lymph node cells were incubated
with DMSO, I-BET-762 (e) at two concentrations (1uM, 5uM), OTX015 (f) at two concentrations (TuM, 5uM), or ibrutinib (g) at two concentrations
(0.2uM, TuM). After 24 hours, cells were harvested and stained as described in panel d. Histograms show fluorescence intensity for CD48e"CD62L*
subclone. Experiment was repeated three times with similar results. H) Line plot shows total cluster-specific copy number estimation of DLBCL1 sample
for all chromosomes as indicated using whole genome sequencing. DMSO: Dimethyl sulfoxide. See Source Data Extended Data Fig. 8.
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Data collection FACSDiva (BD Biosciences) Version 8 was used for acqusition of flow cytometry data.

Data analysis Immunohistochemistry slides were analysed using the open source software QuPath (v0.1.2).
Flow cytometry data were analysed using the commercial software FlowlJo (Tree Star, v10).
Single cell data were processed using the commercial software Cell Ranger (10x Genomics, v2.1).
For data analysis and data visualization different R packages were used (open source):
Seurat (v2.3.3, CRAN) and scran (1.12.1v, Bioconductor) for single cell data analysis.
ggplot2 (v3.2.1, CRAN) and DT (v0.9) for data visualization.
tidyr (v1.0.0, CRAN), dplyr (0.8.3.1v, CRAN), purrr (v0.3.3, CRAN) for data management.
All R codes used for data analysis in the study are avaiable on our github repository and are accessible without restriction.
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Gene set enrichment analysis (GSEA) was performed using the using the open source GSEA java desktop application and the Molecular
Signatures Database (MSigDB, v6.2).
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- A description of any restrictions on data availability

The single cell count tables can be downloaded here https://doi.org/10.11588/data/VRJUNV. Data not included are available from the correesponding author upon
reasonable request.
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Sample size Sample sizes were not pre-determined; however, sample sizes were chosen based on other disease-related scRNA-seq studies referenced in
the manuscript. We aimed to improve the understanding of intratumor heterogeneity in B cell ymphoma, and our data set is currently the
largest invovling both aggressive and indolent B cell lymphoma, as well as non-malignant lymph nodes, particularly regarding the sparse
avaiblability of viable lymph node samples. We investigated 13,259 malignant and 9,296 non-malignant. This number is sufficent to detect
even rare cell types with a frequency below 1%.

Data exclusions | No data were excluded from the analysis.
Replication All attempts of replication were successful.
Randomization Not relevant - no treatment groups.

Blinding Not relevant - no treatment groups.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
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Antibodies

Antibodies used anti-CD3 rabbit monoclonal antibody (clone 2GV6, 0.04 g per test, Ventana, 790-4341)
anti-PAX5 rabbit monoclonal antibody (clone SP34, 0.04 ug per test, Ventana, 790, 4420)
anti-Ki67 rabbit monoclonal antibody (clone 30-9, 0.04 pg per test, Ventana 790-4286)
fixable viability dye e506 (Thermo Fisher Scientific, dilution 1:250, 65-0866-18)
anti-CD3-PerCP/Cy5.5 (clone OKT3, dilution 1:50, Biolegend, 317336)
anti-CD3-APC (clone HIT3a, dilution 1:50, Biolegend, 300312)
anti-CD19-BV421 (clone HIB19, dilution 1:100, Biolegend, 302234)
anti-kappa-PE (clone MHK-49, dilution 1:50, Biolegend, 316508)
anti-kappa-FITC (clone MHK-49, dilution 1:50, Biolegend, 316506)
anti-lambda-PE/Dazzle (clone MHL-38, dilution 1:50, Biolegend, 316621)
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Validation

anti-CD32-PE (clone FUN-2, dilution 1:25, Biolegend, 303206)

anti-CD48-PE (clone BJ40, dilution 1:25, Biolegend, 336708)

anti-CD62L-PE/Cy7 (clone DREG-56, dilution 1:25, Biolegend, 304822)
anti-CD10-APC-Cy7 (clone HI10a, dilution 1:25, Biolegend, 312212)

anti-CD4-AF700 (clone RPA-T4, dilution 1:50, Biolegend, 300526)

anti-CD8-FITC (clone HIT8a, dilution 1:100, Biolegend, 300906)

anti-PD1-BV421 (clone EH12.2H7, dilution 1:25, Biolegend, 329919)
anti-ICOS-PE/Dazzle (clone C398.4A, dilution 1:50, Biolegend, 313532
anti-FoxP3-AF647 (clone 259D/C7, dilution 1:10, BD Biosciences, 560889)
anti-Ki67-BV786 (clone B56, dilution 1:50, BD Biosciences, 563756)

anti-CD22-APC (clone HIB22, dilution 1:25, Biolegend, 302510)

anti-CD24-BV785 (clone MLS, dilution 1:25, Biolegend, 311141)

anti-CD27-PE/Cy7 (clone 0323, dilution 1:25, Biolegend, 302838)

anti-CD44-PE (clone BJ18, dilution 1:25, Biolegend, 338807)

anti-MYC-AF647 (clone 9E10, dilution 1:50 = 1 ug per test Thermo Fisher Scientific, MA1-980-A647)
mouse IgG1 isotype control AF647 (Thermo Fisher Scientific, 1 ug per test, MA5-18168)

Antibodies from Biolegend, BD Biosciences and Thermo Fisher Scientific are well-established standard monoclonal antibodies.
Each antibody is quality control tested and validated by immunofluorescent staining with flow cytometric analysis as stated by
the manufacturer. Additionally, we validated and titrated each of these antibodies by flow cytometric analysis using peripheral
blood mononuclear cells from healthy donors.

Immunohistochemistry antibodies by Ventana are validated by immunofluorescent staining and analysis by Ventana.

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Supplementary Table 1 summarizes patient characteristics including diagnosis, diagnosis subtype, clinical situtation, age and
gender.

Samples used for scRNA-seq (n = 12) derive from patients with a median age of 62, were diagnosed as reactive lymphadenitis (3),
follicular lymphoma (4) or diffuse large B cell ymphoma (5). 6 of them were male, 6 female. Among the patients with B cell
lymphoma 3 were diagnosed initially, 6 had a relapse.

Samples used for flow cytometry (n = 41) derive from patients with a median age of 64. Thery were diagnosed as reactive
lymphadenitis (9), follicular lymphoma (12), mantle cell lymphoma (4), chronic lymphocytic leukaemia (7) or diffuse large B cell
lymphoma (9). 29 of them were male, 12 female. Among the patients with B cell lymphoma 20 were diagnosed initially, 12 had a
relapse.

Patient samples were selected based on the diagnosis (diffuse large B cell lymphoma, follicular lymphoma, mantle cell
lymphoma, chonic lymphocytic leukemia, reactive/non-malignant lymph nodes) and the availability of viable lymph node-derived
cells after processing the lymph node. It seems to be unlikely that this procedure introduces any selection bias as the cell yield is
mainly influenced by the size of lymph node biopsy and this is determined by the surgical procedure.

Ethics Committee of the University of Heidelberg

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

X, The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument

Software

Cell population abundance

Human lymph node derived cells were thawed and subsequently stained for viability using a fixable viability dye e506 (Thermo
Fisher Scientific) and for different surface markers depending on the experimental setup. In case of intracellular staining, cells
were fixed using the intracellular fixation/permeabilization buffer set (Thermo Fisher Scientific).

Immunophenotyping: LSR Fortessa (BD Biosciences)
Flow cytometry-based drug screening: LSR Il (BD Biosciences)

Fluorescence-ativated cell sorting: FACSAria Fusion (BD Biosciences)

Data collection: FACSDiva Version 8 (BD Biosciences)
Data analysis: FlowJo (Tree Star)

All relevant post-sorting fractions were subsequently analyzed to confirm a purity of at least 95 %.
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Gating strategy For complete gating strategy of all relevant populations please see Extended Data Figure 6 and Supplementary Figure 1 and 2.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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