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Genetic variants (both coding and noncoding) canimpact gene function and

expression, driving disease mechanisms such as cancer progression. The
systematic study of endogenous genetic variants is hindered by inefficient
precision editing tools, combined with technical limitations in confidently
linking genotypes to gene expression at single-cell resolution. We developed
single-cell DNA-RNA sequencing (SDR-seq) to simultaneously profile up

to 480 genomic DNA loci and genes in thousands of single cells, enabling
accurate determination of coding and noncoding variant zygosity alongside
associated gene expression changes. Using SDR-seq, we associate coding
and noncoding variants with distinct gene expressionin humaninduced
pluripotent stem cells. Furthermore, we demonstrate that in primary B cell
lymphoma samples, cells with a higher mutational burden exhibit elevated
B cell receptor signaling and tumorigenic gene expression. SDR-seq
provides a powerful platform to dissect regulatory mechanisms encoded

by genetic variants, advancing our understanding of gene expression
regulation and its implications for disease.

Genomic variation in both coding and noncoding regions of the
genome drives human population differences and disease'>. Over
90% of predicted genome-wide association study variants for common
diseases are located in the noncoding genome, while their gene regula-
toryimpactis challenging to assess. Geneticloss-of-function screening
of coding genes and CRISPRinterference (CRISPRi)/CRISPR activation
screens in noncoding regions have provided valuable insights into
disease mechanisms. However, they neglect precise genomic varia-
tion potentially masking more complex cellular disease phenotypes
caused by individual variants*~. Existing precision genome editing
toolstointroduce variants have limited efficiency and variable editing
outcomes in mammalian cells®°. This makes it difficult to use guide
RNAs (gRNAs) as a proxy to annotate the variant perturbationin pooled
screens. Although some droplet-based technologies enable assessment
of variants within transcripts, they neglect the impact of noncoding

variants, which constitute the vast majority of disease-associated vari-
ants™. Exogenous introduction of sequence variants, via episomal mas-
sively parallel reporter assays for noncoding variants or openreading
frame expression for coding sequences, allows for high-throughput
screening of variants for functional effects but lacks endogenous
genomic position and sequence context'> ", These limitations hinder
systematic studies of endogenous genetic variationand itsimpacton
disease-relevant gene expression.

To confidently link precise genotypes to gene expressionin their
endogenous context, acombined single-cell genomic DNA (gDNA) and
RNA assay isrequired to directly assess coding and noncoding variants
and gene expressioninthe same cell. Current technologies thatenable
simultaneous high-sensitivity readout of bothgDNA and RNA are well
established and laborious with low throughput'**. High-throughput
droplet-based or split-pooling approaches can measure thousands
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of cells simultaneously but lack combined high-sensitivity and
tagmentation-independent readout of gDNA and RNA* . This results
insparse datawith high allelic dropout (ADO) rates (>96%), making it
impossibleto correctly determine zygosity of variants on a single-cell
level. Here, we developed targeted droplet-based single-cell DNA-RNA
sequencing (SDR-seq), a scalable and sensitive method to screen
genetic variation in high throughput, linking it to gene expression
and distinct cellular states.

Results

Droplet-based SDR-seq

We developed SDR-seq to simultaneously measure RNA and gDNA
targets in the same cell with high coverage across all cells. The assay
combines insitu reverse transcription (RT) of fixed cells with a multi-
plexed PCR in droplets using Tapestri technology from Mission Bio
(Fig. 1a). Cells are dissociated into a single-cell suspension, fixed and
permeabilized. Insitu RT is performed by using custom poly(dT) prim-
ers, adding a unique molecular identifier (UMI), a sample barcode
(BC) and a capture sequence (CS) to cDNA molecules. Cells containing
cDNA and gDNA are loaded onto the Tapestri machine. After genera-
tion of the first droplet, cells are lysed, treated with proteinase K and
mixed with reverse primers for each intended gDNA or RNA target.
During generation of the second droplet, forward primers with a CS
overhang, PCRreagents and abarcoding bead containing distinct cell
BC oligonucleotides with matching CS overhangs are introduced. A
multiplexed PCR amplifies both gDNA and RNA targets within each
droplet. Cell barcoding is achieved through the complementary CS
overhangs on PCR amplicons and cell BC oligonucleotides. After multi-
plexed PCR, emulsions are broken, and sequencing-ready libraries are
generated. Distinct overhangs on reverse primers containing either
R2N (gDNA, Nextera R2) or R2 (RNA, TruSeq R2) allow for separation
of next-generation sequencing (NGS) library generation for gDNA and
RNA. This enables optimized sequencing of eachlibrary: (1) full-length
to entirely cover variant information on gDNA targets along with the
cellBC and (2) transcript and BC information (cell BC, sample BC and
UMI) for RNA targets.

To test SDR-seq, we performed a proof-of-principle (POP) experi-
ment amplifying asmall number of gDNA (28) and RNA (30) targetsin
humaninduced pluripotent stem (iPS) cells (Fig. 1b). As fixationis criti-
calfor in situ RT, we tested two different fixatives, paraformaldehyde
(PFA) and glyoxal. PFA is commonly used ininsitu RT reactions but can
impair gDNA and RNA quality as it cross-links nucleic acids*. Glyoxal
does not cross-link nucleic acids and was expected to provide amore
sensitive readout®**, For simplicity, overhangs on reverse primers for
gDNA and RNA were the same (R2N) in this experiment (Extended Data
Fig.1a). After filtering high-quality cells and removing doublets using
distinct sets of sample BCs during in situ RT for each fixation condi-
tion, we obtained ~9,000 cells from asingle SDR-seq run (Fig.1c,d and
Extended Data Fig. 1b-f). Cells were evenly distributed over the two
fixation conditions, with over 95% of reads per cell mapping to the
correct sample BC on average (Fig. 1e,f). For downstream analysis,
contaminating reads were removed from each cell.

gDNA target coverage is expected to be uniform across cells as
each cell contains the same gDNA input. We detected 23 of 28 gDNA
targets (82%) with high coverage and in the vast majority of cells
(Fig. 1g-i). Minimal differences in gDNA target detection and cover-
age were observed between PFA and glyoxal conditions (Extended Data
Fig.1g,i). RNA target coverageis expected to vary as they were chosen
based on a range of expression levels. Indeed, individual RNA targets
showed varying expression levels, withsome only expressed inasubset
of cells (Fig. 1j-1). RNA target detection and UMI coverage increased
when using glyoxal compared to PFA (Extended Data Fig. 1h,j). Ubiq-
uitously expressed housekeeping and iPS cell maintenance genes were
detected in all cells, whereas other genes showed specific expression
only in a subset of cells, consistent with published data (Extended

Data Fig. 2a—-d)*. Comparing bulk RNA-seq data of human stem cells
to pseudo-bulked SDR-seq gene expression showed comparable levels
of expression for the vast majority of targets with high correlation
(Fig. 1m,n). SDR-seq showed reduced gene expression variance and
higher correlation between individually measured cells than iPS cell
datafrom10x Genomics and ParseBio, indicating greater measurement
stability (Fig. 1o and Extended Data Fig. 2e).

To test for potential cross-contamination of gDNA and RNA
between cells duringinsitu RT, we performed a species-mixing experi-
mentusing human WTC-11iPS cellsand mouse NIH-3T3 cells. Cells were
processed either separately or asa mixed population duringin situ RT
(Extended DataFig. 2f). This allowed us to distinguish contamination
introduced during in situ RT from general ambient nucleic acids by
comparing the mixed-species condition to the single-species controls.
We obtained atotal of 16,000 cells across the differentin situ RT condi-
tions with the vast majority of doublets effectively removed using the
sample BC information introduced during in situ RT (Extended Data
Fig.2g,h). Cross-contamination of gDNA was minimal (<0.16% on aver-
age), with no difference between the mixed-species and single-species
conditions (Extended Data Fig. 2i,k,1). RNA cross-contamination was
low (0.8-1.6% on average), with increased levels in the mixed-species
condition compared to in the single-species controls (Extended
Data Fig. 2j,m,n). The majority of cross-contaminating RNA from
ambient RNA could be removed using the sample BC information
introduced during in situ RT (Extended Data Fig. 2m,n). These data
indicate that overall levels of cross-contaminating nucleic acids are low
inSDR-seq.

Together, these results demonstrate that SDR-seq enables highly
sensitive detection of DNA and RNA targets across thousands of single
cellsinasingle experiment, with the potential to link both modalities
inahigh-throughput manner.

SDR-seq is scalable to hundreds of gDNA loci and genes

Next, we tested whether SDR-seqis scalable to detect hundreds of gDNA
and RNA targets simultaneously. We designed an experiment using
panels of 120, 240 and 480 targets, with equal numbers of gDNA and
RNA targets in iPS cells (Fig. 2a). To enable cross-panel comparison,
60 gDNA and 30 RNA targets were shared between panels. To adjust
for differencesinsequencing depth, reads were subsampled for gDNA
and RNA based on panel size to achieve equal average read coverage
per cell for shared targets (Extended Data Fig. 3a-d). We confirmed
that separately prepared NGS libraries for gDNA and RNA mapped with
high specificity to their respective references (Extended DataFig. 3e,f).
Overall, 80% of allgDNA targets were detected with high confidencein
more than 80% of cells across all panels, with only aminor decrease in
detection for larger panel sizes (Extended Data Fig. 4a—c). Detection
and coverage of shared gDNA targets were highly correlated between
panels, indicating that gDNA target detection is largely independent
of panelsize (Fig.2b,c). The minor decrease in detection for the larger
panel sizes predominantly affected low-coverage targets (Extended
DataFigs. 4d,eand 5a).Similarly, RNA target detection showed aminor
decrease in larger panels compared to the 120 panel (Extended Data
Fig.4f-h). Detection and gene expression of shared RNA targets were
highly correlated between panels (Fig. 2d,e and Extended Data Fig. 4i,j),
indicating robust and sensitive detection independent of panel size.
Variability was predominantly observed for lowly expressed genes
(Extended Data Fig. 5b).

To assess whether chromosomal context influences gDNA detec-
tionusing SDR-seq, we included target sites among the shared panels
that were either overlapping expressed genes (OEGs) or not OEGs
(NOEGs). Additionally, we tested for different chromatin marks and
states (H3K3me3, H3K27ac and DNase sensitive), reflecting different
genomic regulatory element types depending on their proximity to
the transcription startsite (TSS; Fig. 2f)**. We did not observe astrong
impactondetection and coverage across panels based on OEG or NOEG
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Fig.1| SDR-seq links gDNA variants and gene expression insingle cells.

a, Overview of targeted SDR-seq. R2N (Nextera) or R2 (TruSeq) overhangs on
reverse primers enable separate NGS library generation for gDNA and RNA.

b, Outline of the POP experiment. The fixation conditions and number of
gDNA/RNA targets are indicated. ¢, Knee plot of ranked cells by sequencing depth
(gDNA +RNA). d, Number of cells found per fixation condition. e, Correct sample
BCdetection per cell. Read count for maximum sample BCs found was divided

by the total amount of RNA reads per cell; n = 4,391 (PFA) and 4,553 (glyoxal)

cells from one SDR-seq experiment. f, gDNA reads per cell versus RNA UMIs per
cell per fixation condition. Color indicates the percentage of reads per cell with
max sample BCs. g,h, Number of gDNA targets per cell (g) and gDNA reads per

Average expression (log1P)

Average expression (log,,)
cell (h); n=4,391 (PFA) and 4,553 (glyoxal) cells from one SDR-seq experiment.
i, Individual gDNA targets are shown per fixation condition. Size indicates the
percentage of cells detected in. Color indicates read coverage; chr, chromosome.
j.k, Number of genes per cell (j) and RNA UMIs per cell (k); n = 4,391 (PFA) and
4,553 (glyoxal) cells from one SDR-seq experiment. I, Individual genes are shown
per fixation condition. Size indicates the percentage of cells detected in. Color
indicates UMI coverage. m, Comparison of expressed genes to bulk RNA-seq
data; zscore dataare scaled by row. n, Pearson correlation of expressed genes to
bulk RNA-seq data. 0, Average expression and variance of genes assayed in the
POP experiment using SDR-seq, 10x Genomics and ParseBio.
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Fig.2|SDR-seq scales to hundreds of targets simultaneously. a, Outline of
panelsize testing experiments. gDNA and RNA targets are equal within panels;
shared targets are indicated. b,c, Pearson correlation of detection (b) and
coverage (c) of shared gDNA targets between panels. d,e, Pearson correlation
of detection (d) and coverage (e) of shared genes between panels. f, Outline of
chromatin sites tested. A combination of the chromatin marks detected and
therelative distance to a gene define regulatory elements; PLS, promotor-like

sequence; pELS, proximal enhancer-like sequence; dELS, distal enhancer-

like sequence. g, Detection of different chromatin sites between panels. Size
indicates the percentage of cells detected in. Color indicates read coverage.

h, Outline of expression levels tested. i, Detection of genes with different
expression levels between panels. Size indicates the percentage of cells detected
in. Color indicates read coverage.j, Heat map of expression of all shared genes
between panels; zscore data are scaled by row.

location (Fig.2g). Notably, no specific regulatory element type showed
asystematic detectionbias, and evensites with low DNase signal were
confidently recovered.

Genes were selected based on a range of expression levels and
grouped into high, medium and low expression (Fig. 2h). High- and
medium-expression genes were detected in almost all cells, whereas
low-expression genes showed reduced detection rates across panel
sizes (Fig. 2i). This aligns with published data suggesting that some
genes are not expressed in all iPS cells®. Overall expression levels of
shared genes were highly similar across the different panel sizes tested
(Fig. 2e,j).

To determine the ADO rate of SDR-seq, we selected gDNA ampli-
con loci containing heterozygous single-nucleotide polymorphisms
based on bulk sequencing data. In amplicons detected in more than
80% of cells, heterozygous variants were correctly called in an aver-
age of 87-94% of cells (Extended Data Fig. 5c,d). The primary cause of
ADO in larger panels was overall low detection rates of a gDNA target
(Extended Data Fig. 5e). Noise levels of both miscalled variants and
deletions or insertions were low (<0.15%) and showed comparable
levels across panels (Extended Data Fig. 5f-h). The frequency of these

lowly abundant miscalled variants depends on the reference base, with
PCR deamination byproducts likely being the most common. Variant
allele frequencies (VAFs) of individual variants could distinguish true
heterozygous alleles from variant noise (Extended Data Fig. 5i).

SDR-seq is thus scalable to assay hundreds of gDNA and RNA tar-
gets simultaneously with high reproducibility and sensitivity across
different panelsizes, independently of chromatin state and expression
level. This makes it a versatile tool to analyze variants at hundreds
of loci in single cells, while simultaneously measuring cellular gene
expression.

SDR-seq confidently detects gene expression changes
Genomicvariants canincrease or decrease gene expression, but effect
sizes are often small. Therefore, a sensitive readout of these gene
expression changes is essential. We probed the ability of SDR-seq to
detect strong and subtle gene expression changes across different
perturbation systems designed to repress gene expression or introduce
variants that alter expression levels.

To assess whether SDR-seq can detect strong gene expression
changes, we designed a CRISPRi experiment composed of four gRNA
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categories: (1) nontargeting control gRNAs (NTC), (2) gRNAs targeting
expression quantitative traitloci (eQTLs), (3) gRNAs targeting the TSS
ofgenes predicted to be affected by those eQTLs (CRISPRi controls) and
(4) gRNAs targeting gene bodies to possibly introduce STOP codons
through editing (STOP controls; Fig. 3a). CRISPRi-expressing humaniPS
cellsinfected with alentiviral CROP-seq gRNA library were selected via
fluorescence-activated cell sorting, followed by SDR-seq. The SDR-seq
primer panel amplified the gDNA sites of the eQTLs together with
associated transcripts, the viral CROP-seq transcript to assign cells
to gRNAs and multiple housekeeping genes to normalize data. Cells
were successfully assigned to gRNAs (75%), with an average of 30 cells
per gRNA (Extended DataFig. 6a,b). NTC gRNAs showed no significant
effect onany of the genes measured, whereas most (95%) TSS-targeting
CRISPRi controlgRNAs caused astrong reductionin target gene expres-
sion (Fig.3b).Seven eQTLs (24%) and three STOP control gRNAs (60%)
significantly reduced target gene expression. Significantly scoring
eQTL and STOP control gRNAs were located within a 2-kb window of
the TSS, suggesting adirect inhibitory effect similar to CRISPRi control
gRNAs (Extended Data Fig. 6c). This demonstrates that SDR-seq can
confidently detect gene expression changes mediated by CRISPRi.
Additionally, these data highlight the importance of directly assessing
variants in proximity to the TSS to evaluate theirimpact on gene expres-
sion rather than approximating such effects with CRISPRIi.

Next, weaimed todirectly install eQTL variants and measure more
subtle effects on gene expression (Fig. 3c). We generated two human
iPS celllines expressing a prime editing (PE) transgene, with or without
the coexpression of a dominant-negative regulator of the mismatch
repair pathway designed to enhance editing efficiency (Pemax or
Pemax-MLH1dn)". To validate the system, we used a fluorescent len-
tiviral reporter system that measures editing efficiency via reconsti-
tution of a nonfunctional enhanced green fluorescent protein (eGFP;
Extended Data Fig. 6d). Using a PE gRNA (pegRNA) that repairs eGFP,
we observed ~-50% editing efficiency, demonstrating the system’s edit-
ing potentialin humaniPS cells (Extended DataFig. 6e). We lipofected
these PE iPS cells with a pegRNA library designed to introduce the
same eQTLs tested in the CRISPRi screen, as well as STOP codons to
assess nonsense-mediated decay. Following fluorescence-activated
cell sorting enrichment of lipofected cells, we performed SDR-seq
(Fig. 3c). Editing efficiency was limited in both PE cell lines, compli-
cating the interpretation of many variants (Extended Data Fig. 7a,b).
Despite this limitation, we performed differential gene expression
testing for between called reference (REF), heterozygous (HET) and
alternative (ALT) variant alleles (Extended Data Fig. 7c-e). Significant
gene expression changes were only observed for the STOP controls
(Fig. 3d). Depending on the position of the STOP codon within the
transcript, effects of nonsense-mediated decay on transcript levels
canvary®. For SOX11, we observed no changes, whereas STOP codons
introduced in ATF4 and MYHIO resulted in significant reductions in
gene expression (Fig. 3e).

In addition to installing eQTLs with PE, we tested the use of base
editing (BE) in human iPS cells. We selected 56 high-likelihood eQTLs
with a potential association for gene expression changes based on
multiple studies, including noncoding variants that arelocated in open
chromatin and editable with ABE8e or CBE base editors** (Fig. 3f).
None of these variants have previously been experimentally validated
inan endogenous context as causative for transcriptional regulation,
to ourknowledge. Afterintroducing gRNA libraries intoiPS cells, cells
were selected, and SDR-seq was performed. We found several eQTL
variants with a significant effect on target gene expression (Fig. 3g).
Additionally, we measured the effect of non-BE-associated mutations
using SDR-seq. Human iPS cells accumulate somatic mutations dur-
ing cell culture, while they undergo constant competitive selection
forvariants thatare advantageous in culture conditions®. We found a
synonymous variantinthe 3’ end of POUSFI1, agene encoding a critical
pluripotency factor, whichsignificantly altered gene expressionin the

same direction as observed in prior eQTL studies® (Extended Data
Fig.8a). However, after assessing variants that may have accumulated
during culturing along the entire amplicon, we found that certain
combinations of variants showed different effects on POU5SFI expres-
sion (Fig. 3h and Extended Data Fig. 8b). In particular a set of variants
in the 3’ untranslated region was associated with significantly differ-
enttranscriptlevels. The presence of these variants was confirmed by
bulk amplicon sequencing of this locus (Extended Data Fig. 8c). This
highlights theimportance of directly assessing variants at the locus of
interest to accurately resolve theirimpact on gene expression.

SDR-seq can confidently detect variants at the single-cell level
and associate them with gene expression differences, demonstrating
sensitivity even for subtle changes. This is the case even under condi-
tions of limited editing efficiency in our experiments, which confound
the interpretation of many tested eQTLs.

B cell lymphoma variants linked to tumorigenic expression
Linking genetic variants to gene expression profiles is crucial for
understanding cancer pathogenesis yet remains challenging in pri-
mary samples. B celllymphomas are heterogenous cancers of the lym-
phatic system arising from distinct stages of B cell maturation. In this
maturation process, naive B cells are stimulated to migrate through the
dark zone (DZ) and light zone (LZ) of the germinal center, where they
undergo somatic hypermutation and selection, followed by maturation
into memory B cells and plasma cells**"*. Although the cell of originis
central to the classification of B cell lymphomas, it was recently shown
that cancer cells retain their ability to differentiate. Thereby tumors
acquire multiple maturation states from the same cell of origin while
simultaneously undergoing clonal evolution through the accumulation
of heterogenous genetic variants over time***,

We used B cell lymphomas to investigate how genetic variation
impacts gene expression and differentiation within tumors. We ana-
lyzed primary tumor samples from two individuals with follicular lym-
phomaand oneindividual with germinal center subtype diffuselarge B
celllymphoma using SDR-seq (Fig. 4a). A targeted gDNA panel, based
onvariants frombulk DNA sequencing, was applied to profile 3,600 to
8,400 cells per sample. Clustering of cells showed distinct separation
between B cells and non-B cells in both RNA- and variant-based analy-
sis (Fig. 4b,c). Using a reference mapping approach based on mutual
nearest neighbors and canonical correlation analysis, we mapped B cell
maturation states fromadataset of nonmalignant reactive lymph nodes
to tumor samples (Extended Data Fig. 9a,b)***. Immunoglobulin light
chainrestriction confirmed monoclonality and malignancy of tumor
B cells (Extended DataFig. 9¢)””. Somatic HET or ALT variants detected
in both malignant B cells and non-B cells suggested limited contribu-
tions to disease progression, whereas variants occurring exclusively
inmalignant B cells may be oncogenic (Fig. 4d). Variants found in bulk
gDNA sequencing of the same samples could also be recovered using
SDR-seq (Extended Data Fig. 9d). The three samples showed a num-
ber of distinct variants, while some predominately somatic variants
were shared.

Next, we focused on a comparative analysis between DZ and LZ
maturation states as most B cells belonged to these states (>80%).
Clustering DZ and LZ cells based on variant information covered with
our targeted gDNA panel revealed that two samples (FL2 (follicular
lymphoma) and GCB1 (germinal center subtype diffuse large B cell
lymphoma)) showed clonal structures (Fig. 4e). Genetic clones showed
differences in proportions of the DZ and LZ states annotated by gene
expression, indicating that clonal evolution and differentiation are pre-
dominantly separate processes. Our data suggest that genetic clones
with different variant composition continue differentiating after they
arise and can have animpact on differentiation rates.

Differential abundance testing showed that BCL2 variants, agene
encoding an antiapoptotic factor frequently overexpressed in B cell
lymphomas and central to B cell maturation, were enriched in the LZ
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Fig. 3| SDR-seqis sensitive to detect gene expression changes and link

them to variants. a, Outline of the CRISPRi screen. b, Volcano plot for the
CRISPRi screen with different gRNA classes indicating fold change and P value
calculated using MAST with a Benjamini-Hochberg correction for multiple
testing. Significant hits (P < 0.05) are colored. For NTCs, all genes measured

are shown. For other gRNA classes, only the intended target for eachgRNA is
shown. ¢, Outline of the PE screen. d, Volcano plot for the PE screen with different
gRNA classes indicating fold change and P value calculated using MAST with a
Benjamini-Hochberg correction for multiple testing. Significant hits (P < 0.05)
are colored. Comparisons between the different alleles are shown as shapes; REF,
reference allele; HET, heterozygous allele; ALT, alternative allele. e, Alleles and
gene expression for SOX11, ATF4and MYH10 STOP controls are shown; **P <10
and ***P <10™* calculated using MAST with a Benjamini-Hochberg correction

for multiple testing; n = 4,152 (SOXII: REF), 117 (SOXII: HET), 9 (SOX1I: ALT),

4,916 (ATF4:REF), 53 (ATF4:HET), 4 (ATF4: ALT), 4,925 (MYH10: REF) and 18 cells
(MYH10: HET) from one SDR-seq experiment; P=3.05 x 10* (ATF4: REF-HET),
5.38 x 107 (ATF4: REF-ALT), 4.95 x 107 (ATF4: HET-ALT) and 7.90 x 10™° (MYHI0:
REF-HET). f, Outline of the BE screen. g, Volcano plot for different gRNA classes
indicating fold change and P value calculated using MAST with a Benjamini-
Hochberg correction for multiple testing. Significant hits (P < 0.05) are colored.
Comparisons between the different alleles are shown as shapes. h, Variants in the
POUSF1locus and theirimpact on gene expression are shown; UTR, untranslated
region. Theimpact of each variantis color coded. REF, HET and ALT alleles are
shown for each genotype. Fold change between the combination of variantsiis
indicated in color (green), and Pvalue (-log,,) is indicated as size calculated using
MAST with aBenjamini-Hochberg correction for multiple testing.

compared to DZ (Fig. 4f)*. Variants were also enriched in many immu-
noglobulin variable region genes, which are targeted during somatic
hypermutation. LZ cells predominantly exhibited anincrease in ALT or
REF variant alleles compared to DZ cells (Fig. 4f). Next, we tested if fre-
quent variantsimpact gene expressionin cells belonging to either the
LZ or DZ state. We subset cells within each state into variant containing
or not containing and performed differential gene expression testing.
This revealed a number of genes involved in B cell receptor signaling
and tumorigenesis, frequently affected inboth DZ and LZ states, with
increased participant-specific expression levels predominantly in the
LZ comparedtointhe DZ (Fig.4g,h and Extended Data Fig. 9e). Elevated
Bcellreceptor signalingis associated with repressing apoptosis in B cell
lymphomas***°. Cells with higher mutational burden, characterized by

frequent HET and ALT variants, showed elevated levels of B cell receptor
signaling compared to cells with lower mutational burden (Fig. 4i).LZ
cellsinthe geminal center canrevert to the DZ following unsuccessful
binding to antigens fromantigen-presenting cells and thereby undergo
multiple rounds of somatic hypermutations®. Our data suggest that
cells with a high mutational burden may have undergone more rounds
of somatic hypermutation and have increased B cell receptor signaling
and tumorigenic gene expression patterns to evade apoptosisinduced
by unsuccessfulantigenbindingintheLZ. Thisisin line with the distinct
enrichmentof variantsinthe LZ compared tointhe DZ that we observe.

Using SDR-seq, we profiled variants and gene expression simul-
taneously in primary tumor samples, linking cell states to mutational
burden. We could distinguish variants present in malignant B cells and
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Fig. 4| SDR-seq to profile primary samples from individuals with B cell
lymphoma. a, Outline of the experiment. Primary samples and target panels
areindicated. b, Uniform manifold approximation and projection (UMAP)
highlighting the different samples clustered by either gene expression (RNA)

or variants (gDNA). The numbers of cells for each sample are indicated as abar
graph. ¢, UMAP highlighting the maturation states clustered by either gene
expression (RNA) or variants (gDNA). The numbers of cells within a maturation
state are indicated as a bar graph (percentage of total); Mem, memory B cells.

d, Variants detected in the experiment. Color indicates the percentage within B
cellsand non-B cells for each variant. Samples and HET/ALT alleles are indicated
by color. Venn diagram showing the overlap of variants that occur with more
than 5% frequency in each sample. e, Subset cells for DZ and LZ maturation states
clustered by variants (gDNA) with clones indicated by color for each sample. The
numbers of cells within DZ or LZ maturation states are indicated as abar graph
(percentage of total). f, Differentially abundant variants between DZ and LZ

P value (-log,,)

states (P < 0.05, x* test with a Benjamini-Hochberg correction). Summed counts
of genes that the variants map to are shown in abar graph. ADZ - LZ (percentage
of therespective allele in DZ minus LZ) is shown in a heat map. Genes that the
variants map to and patient of origin are indicated by color. g, Gene expression
of the most frequently differentially expressed genes across samples in LZ

and DZ states. Color indicates expression (z score, data are scaled by column),
primary samples and maturation state. h, Gene Ontology (GO) term analysis

of the most frequently differentially expressed genes. P values were computed
using a Fisher’s exact test with the weightO1 algorithm (topGO), correcting for
GO hierarchy structure. cell., cellular; comp., compounds; DE, differentially
expressed; proc., process; resp., response; trans., transduction. i, Genes involved
in B cell receptor signalingin cells with high (top 20%) and low (bottom 20%)
variantburdenin DZ and LZ states. Color indicates expression (zscore, data are
scaled by column), primary samples, genes, maturation state and variant burden.
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non-B cells, perform clustering analysis based on variants identifying
clonalstructures, test for enrichment of variants in maturation states
and assess their impact on gene expression. This revealed elevated
tumorigenic and antiapoptotic signaling in cells with higher muta-
tional burden.

Discussion

Here, we developed SDR-seq to directly measure gene expression
combined with coding and noncoding variants in single cells with
high throughput and sensitivity. This method uses targeted primer
panels for droplet-based multiplexed PCR to assess both gDNA and
RNA in the same cells. Importantly, SDR-seq enables variant detec-
tion in noncoding regions of the genome, where the vast majority of
disease-associated variants are located'*>". The targeted approach of
SDR-seq facilitates high coverage of gDNA and RNA targets, allowing
for confident detection of genomic variants and their zygosity, sen-
sitive gene expression readout and reduced sequencing costs. This
contrasts with existing split-pooling or droplet-based approaches,
which rely on tagmentation of nucleosome-depleted chromatin and
require whole-genome sequencing of each cell, resulting in sparse data
and difficultiesin correctly determining variant zygosity** . For these
methods, ADOrates are high (>96%), whereas SDR-seq enables accurate
detection of -90% of alleles at the single-cell level. ADO levels of SDR-seq
are comparabletotargeted single-cell DNA sequencing using Tapestri
(ADO <10%)*. Lower-throughput single-cell methods that are plate
based rely on tagmentation, amplification via multiple displacement
or primary template-directed amplification (PTA) for gDNA readouts
while enabling a whole-genome sequencing readout’® >, Although
tagmentation- and multiple displacement amplification-based tech-
nologies also have high ADO rates, PTA achieves a high recovery rate
for correctly determined alleles (>90%) when sequencing libraries
areat saturation®>***%3, SDR-seq achieves a drastic ~100-fold increase
in cell throughput compared to PTA-based single-cell DNA and
RNA-sequencing technologies, while reducing total genome cover-
age due toits targeted approach?.

Our results demonstrate that SDR-seq can assay hundreds of
gDNA loci and genes simultaneously with high reproducibility and
sensitivity across different panel sizes, covering up to 42.8 kb of
gDNA per cell. Variants could be detected independent of chroma-
tin context across hundreds of gDNA loci in the same cell. Distinct
RNA targets can be picked and adjusted according to experimental
needs. The scalability and sensitivity of SDR-seq make it a versatile
tool for studying awide range of coding and noncoding genetic vari-
ants and their effects on gene expression across diverse cell types.
We can detect variants at a frequency of around 0.15% depending
on the type and length of the variant. In both human iPS cells and
primary human samples, we link variants to distinct gene expression
patterns and can sensitively detect subtle gene expression changes.
Advancesin PE and pegRNA prediction tools might overcome limita-
tions that we observed in this study constraining the interpretation
of several infrequently edited eQTLs. In B cell ymphoma samples,
SDR-seq enabled the identification of tumor-specific variants and
their associated gene expression profiles, highlighting its potential
for studying intratumor heterogeneity and cancer evolution. We
could associate cells with higher mutational burden to elevated B
cell receptor signaling and tumorigenic gene expressionin primary
B cell lymphoma samples.

In future applications, SDR-seq could be combined with other
readouts, including a targeted protein readout or DNA methylation,
to provide amore holistic view of cellular regulation®**. Targeting the
mitochondrial genome with SDR-seq could enable clonal tracing of cell
populations based on mitochondrial somatic variants®**. Enhanced
gene expression readouts might enable measurement of larger RNA
panelsorawhole-transcriptome readoutin parallel to a highly sensitive
targeted gDNA readout for multiple loci. Although our attempts for a

combined whole-transcriptome readout by using template switch oli-
gonucleotides during the in situ RT reaction were unsuccessful, other
experimental approaches might be successful, thereby broadening
the scope of potential applications.

SDR-seq offers a powerful, scalable and sensitive approach to link
genomic variants to gene expression in single cells, and this method
is flexible to assay both genetically engineered cell lines and primary
tissue samples. With the vast majority of predicted variants for com-
mon diseases located in the noncoding genome, SDR-seq enables the
study of these variants systematically at scale’™. In combination with
gene editing tools, it holds great potential to decipher the regulatory
mechanisms that underlie endogenous variants, complementing other
high-throughput approaches that assay the gene expression-to-variant
link of endogenous loci or via barcoding approaches™>***°, This
method advances our ability to study gene expression regulation and
its implications for disease, providing insights that could drive the
development of therapeutic strategies and enhance our understanding
of complex genetic disorders.
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Methods

SDR-seq protocol

Adetailed protocol for SDR-seqis published on protocols.oiathttps://
doi.org/10.17504/protocols.io.6qpvroq43vmk/vl.

Cell culture

WTC-11iPS cells (Coriell Institute for Medical Research, GM25256) were
verified to display a normal karyotype, were contamination free and
wereregularly tested for mycoplasma. Cells were cultured in Essential
8 medium (E8; Thermo Fisher Scientific, A1517001) on Vitronectin
XF-coated (StemCell Technologies, 07180) tissue culture plates. Cells
were maintained at 37 °C and 5% CO,. iPS cells were split using Accutase
(StemCell Technologies, 07922) and E8 supplemented with 10 pM
Y-27632 dihydrochloride (RI; Tocris, 1254). After single-cell dissocia-
tion, 1volume of E8 + RIwas added, and cells were spunat 200g (5 min),
resuspended and plated in E8 + RI. Mouse NIH-3T3 (DSMZ, ACC 59)
cells were cultured in DMEM (Gibco, 11965092) supplemented with
10% fetal bovine serum (FBS), 100 U mlI™ penicillin/streptomycin and
1x nonessential amino acids on gelatin-coated tissue culture plates at
37 °Cwith5% CO,.

SDR-seq in humaniPS cells

WTC-11iPS cells were dissociated into single cells using Accutase, fil-
tered through a 40-um cell strainer and counted. For all experiments
performedinhumaniPScells, 1.5 x 10° cells were used as input for fixa-
tion. This was the minimum number of cells that were used asinput for
fixation in any experiment that involved humaniPS cells.

For glyoxal fixation, cells were resuspended in 200 pl of glyoxal
fixation solution (3% glyoxal, 20% ethanol and 0.75% acetic acid (gla-
cial), pH 4.0) and incubated for 7 min at room temperature. One mil-
liliter of ice-cold wash buffer 1 (1x PBS with 2% bovine serum albumin
(BSA), 1mM DTT and 0.5 U pl™ RNasin Plus ribonuclease inhibitor;
Promega, N2615) was added, and cells were spun at 500g for 3 min at
4 °C. The supernatant was carefully removed, and the wash step was
repeated with wash buffer1for atotal of two washes. Cells were resus-
pended in 175 pl of ice-cold permeabilization buffer (10 mM Tris-HCI
(pH 7.5),10 mM NaCl, 3 mM MgCl,, 0.1% Tween 20, 0.2 U pl™ RNasin
Plus ribonuclease inhibitor, 1 mM DTT, 2% BSA, 0.1% IGEPAL CA-630
and 0.01% digitonin) and incubated for 4 min on ice. One milliliter of
ice-cold wash buffer 2 (10 mM Tris (pH 7.5),10 mM NaCl, 3 mM MgCl,,
0.1% Tween 20, 0.2 U pl™ RNasin Plus ribonuclease inhibitor, 1 mM
DTT and 2% BSA) was added, and the tube was gently inverted four
to six times. Cells were spun at 500g for 5 min at 4 °C, resuspended in
ice-cold resuspension buffer (1x PBS,2%BSA,1mMDTTand 0.2 U pl™*
RNasin Plus ribonuclease inhibitor), filtered through a40-pm strainer,
counted and diluted to 1.4 x 10° cells per ml.

PFA fixation was performed as described elsewhere with adapta-
tions®. Inshort, cellswere resuspendedin1 mlof 1x PBSwith 0.2 U pl™
RNasin Plus ribonuclease inhibitor, 3 ml of 1.3% PFA solution (in 1x
PBS) was added, and cells were fixed for 10 min on ice. One hundred
and sixty microliters of permeabilization buffer (5% Triton X-100 with
0.2 U pl™ RNasin Plus ribonuclease inhibitor) was added, and the tube
was gently inverted four to six times and incubated for 3 min onice.
Cellswere spun at 500gfor 3 minat4 °C, the supernatant was carefully
removed, and cells were resuspended in 500 pl of 1x PBSwith 0.2 U pl™
RNasin Plus ribonucleaseinhibitor.Ice-cold 100 mM Tris-HClat pH 8.0
(500 pl) wasadded and mixed by inverting the tube. Then, 20 pl of per-
meabilization buffer was added and mixed by inverting the tube four
tosix times. Cells were spun at 500g for 3 min at 4 °C, the supernatant
was removed, resuspendedin 300 plof 0.5x PBSwith 0.2 U pl™ RNasin
Plusribonuclease inhibitor, filtered through a40-umstrainer, counted
and diluted to 1.4 x 10° cells per ml.

Cell loss during fixation ranged between 10 and 30%. This was
achieved by performing spinsinswinging-bucket rotors and using 15-ml
polypropylene centrifuge tubes during the entire process.

RT master mix consisting of a final concentration of 1x RT buffer,
0.25 U pl™ Enzymatics RNase Inhibitor (Biozym, 180520), 0.2 U pl™
RNasin Plus ribonuclease inhibitor, 500 mM dNTPs and 20 U pl™
Maxima H Minus Reverse Transcriptase (Thermo Fisher, EP0752) was
preparedonicein 8 plforatotal reaction volume of 20 pl. Four micro-
liters of RT oligonucleotides (12.5 uM) was combined in each 96-well
plate with 8 pul of RT master mix (Supplementary Tables1and2). Eight
microliters of fixed and permeabilized cells (10,000 cells) was added
to each well, yielding a total reaction volume of 20 pl. We used a total
of 48 RT reactions, yielding 480,000 cells, and recommend this num-
ber as it provides enough surplus to be in the range of the optimal
cell concentration needed for the Tapestri microfluidic device from
Mission Bio (105,000-200,000 cells). RT was performed in athermo-
cycler using the following program: 10 min at 50 °C and three cycles
of2sat8°C,45sat15°C,45sat20°C,30sat30°C,2 minat42°Cand
3 minat 50 °C, followed by 5 min at 50 °C. All RT reactions were pooled
into a 15-ml conical tube containing 10 ml of 1x PBS with 1% BSA, and
cellswere spun at 500g for 5 min.

Samples were processed using a Tapestri microfluidic device
from Mission Bio (version2, MB51-0007, MB51-0010 and MB51-0009)
according to the manufacturer’s protocol, with modifications. The
in situ RT-processed cell pellet was resuspended in cell buffer from
Mission Bio, and cells were counted and diluted to the appropriate
concentration of4,000-8,000 cells per pl. Custom primers were used
in the multiplexed droplet PCR amplification step. RNA primers were
designed using the TAP-seq primer prediction tool with a targeted
optimal melting temperature of 60 °C (minimum 58 °C and maximum
62 °C) and a product size range from 150 to 300 bp using published
single-cellRNA-sequencing iPS cell data for primer prediction (https://
www.ebi.ac.uk/biostudies/arrayexpress with E-MTAB-6687)*%, gDNA
primers were designed using the Tapestri Designer (https://designer.
missionbio.com). Primers were not validated before use; a dropout of
around 10-20% is expected for gDNA primers.

Especially for gDNA primers adropout of custom primersisto be
expected. Anoverview of version1and version 2 primer sequences with
corresponding overhangs canbe found in Supplementary Tables1and
2. Version 1gDNA and RNA primers both had CS and R2N overhangs
(only used in the POP experiment). Version 2 gDNA primers had CS
and R2N overhangs, whereas RNA primers had CS and R2 overhangs.
Detailed information onsample multiplexing using RT primers canbe
found in Supplementary Table 3. Forward and reverse stock primers
had concentrations of 20 tM and 120 uM for both versions, respec-
tively. Both reverse and forward primer mixes contained equimo-
lar amounts of gDNA and RNA targeting primers. For version 1, final
sequencing libraries were generated according to the Mission Bio user
guide. For version 2, RNA and gDNA sequencing libraries were gener-
ated separately using the corresponding library amplification primers
(Supplementary Table 2).

SDR-seq for species cell mixing experiments using human iPS
cells and mouse NIH-3T3 cells

HumaniPS cells (WTC-11) and mouse fibroblasts (NIH-3T3) were fixed
as described above with glyoxal. Cells of each species origin were
either used individually or mixed during subsequentin situ RT using
a distinct sample BC-introducing RT primer per well (48 in total).
Human and mouse genes to profile by SDR-seq were selected to dis-
play a range of expression. RNA targeted primers were designed as
described above using public data (https://www.10xgenomics.com/
datasets/500-1-1-mixture-of-human-hek-293-t-and-mouse-nih-3-t-
3-cells-3-It-v-3-1-chromium-x-3-1-low-6-1-0) from 10x Genomics for
NIH-3T3 primer design. Genomic sites were randomly selected, and
gDNA targeted primers were designed as described above. Samples
were processed using a Tapestri microfluidic device from Mission Bio
(version 3, MB03-0091, MB03-0092 and MB03-0093) with modifica-
tions as described above.
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SDR-seq in primary B cell ymphoma samples
The study (S-254/2016) was approved by the University of Heidelberg’s
Ethics Committee. Informed consent from every participant was gath-
ered beforehand. Lymph node samples were processed and frozen fol-
lowing previously described methods®"%. Frozen samples were thawed,
added to10 ml of RPMI (Gibco, 11875093) supplemented with 10% FBS
and 0.5 mMEDTA and spun at400gfor 5 min. Cells were resuspended in
10 ml of 1x DPBS supplemented with 5% FBS, filtered through a 70-pm
strainer and spun at400gfor 5 min. Cells were resuspendedin 100 pl of
bead solution from a Dead Cell Removal kit (Miltenyi Biotec, 130-090-
101) and incubated for 15 minin the dark. Binding buffer was prepared
according tothe manufacturer’s protocol, and the LS column (Miltenyi
Biotec, 130-042-401) was washed with 500 pl of binding buffer. Cells
were applied to the column and washed four times with binding buffer
while collecting the flow through. Cells were spun at 400g for 5 min
andresuspended in1mlofbinding buffer. We proceeded with glyoxal
fixation and SDR-seq as described above. For primary cells, input can
bealimitingfactor to perform SDR-seq. As described above, we recom-
mend 48 wells with 10,000 cells each for thein situ RT reactionyielding
480,000 cells, enough surplus to be in the optimal range for the Mis-
sion Bio microfluidic device (105,000-200,000 cells). If there are not
enoughcellsinanindividual primary sample, they can be multiplexed
onthe same Tapestrirun by using distinct sample BCs during the insitu
RTreactionto achieve the optimal cell concentration needed asinput
for the Tapestri device. To fill up an entire lane of a Tapestri run, the
minimum number of cells that was used in this study for a primary
sample was 380,000 cells as input for the glyoxal fixation and 350,000
cellsasinput for theinsitu RT. This represents the lowest number used
inthismanuscriptandyielded around 8,400 cells for this particular run.
The gDNA panel was constructed for regions with >20% VAF
detectedintheselected tumorsamplesfromthe targeted DNA-sequencing
data, which were sampled previously in Fitzgerald et al.**. Genes for a
targeted expression readout of the profiled B cell ymphoma samples
were chosen based on both the literature and CITE-seq data from the
same samples**. These included genes from maturation markers found
in the literature and variable features, differentially expressed genes
and housekeeping genes based on single-cell RNA-sequencing data
(Supplementary Table 4). Primers were designed as described above.

SDR-seq data analysis

For each SDR-seq dataset generated, we first performed custom BC
identification and error correction, mapped reads to custom ref-
erence sequences and built read and deduplicated UMI matrices.
This was performed with a software package we named SDRranger
(https://github.com/hawkjo/SDRranger; https://doi.org/10.5281/
zenodo.14762618 (ref. 63)).

The full BCstructure for the RNA targeted librariesis of the format
cell BC1 (variable-length linker (14-17 bp)), cell BC2 (constant length
linker (15 bp)) and sample BC (UMI). The gDNA libraries are the same
but lack the sample BC and UMI. To identify these, we first aligned
each read to all possible linker backbone sequences to account for
the variable-length linker sequences. We discarded alignments with
length-normalized alignment scores more than two standard devia-
tions below average, measured from the first 10,000 reads. We then
performed error correction on BC1and BC2 to unique corrected BCs
with aLevenshtein distance of 0 or 1. Due to the adjacent UMI, the sam-
ple BCdoes not have anidentifiable end pointinthe case of insertions
and deletions, so we corrected sample BCs with free divergence of O or
1and with no other BC with free divergence only 1 higher®*.

Following BC identification, reads were mapped to custom align-
ment references built for each gDNA and RNA library. For gDNA, the
chromosomal locations of the amplicons were used to extract refer-
ence sequences. For RNA, the site of the primer binding until the end
ofthe poly(A) tail was used to extract reference sequences. Reference
sequences were extracted from GRCh38.p14. Custom fasta and .gtffiles

were generated and used to build references using the genomeGener-
ate function of STAR (v2.7.11a). Separate gDNA or RNA-sequencing
libraries were aligned to the corresponding reference, except for check-
ing the specificity of the sequencing libraries.

For the POP experiment, reads were separated into gDNA and
RNA reads before BC identification by a separate mapping step to the
corresponding references. Final bam files are produced, which contain
tags with cell BC and sample BC sequences for each read, both before
and after error correction.

Matrices were then constructed by tallying reads by cell BC and
sample BC versus gene or gDNA amplicon. To construct the UMI matri-
ces, UMIswere deduplicated by adapting the directional network dedu-
plication method described in the UMItools package®. For all reads
fromagiven cell and given gene or amplicon, a connectivity graph of
all observed UMIsis constructed. Each nodeis a unique UMIsequence
andread count of that sequence, and directed edges are added between
nodes A and B if the two UMIs have a free divergence of 1 to allow for
indels, but onlyif n, > 2n; - 1reads, where n, and nz are the respective
numbers of reads. This is based on the observation that each additional
errortoaUMIsequence should reduce the frequency of observing that
sequence. Furthermore, only oneincoming ‘parent’ edgeis allowed per
node to avoid artifactual connections through singletons. The final
number of UMIsis the number of connected components of the graph
attheend of this process. Thisis repeated for each cell and sample BC
for each gene or amplicon to build the full matrix.

The resulting cell-gene (UMIs-RNA) and cell-amplicon (reads-
gDNA) matrices were analyzed in R using the Seurat R package (v5.0.3).
First,ageneral threshold per cell was set onreads per cell (RNA + gDNA)
based onrank-rank plots of reads per cell ranked by size to determine
aninitial set of cells to include in the analysis. Then, multiple metrics
were used to filter for high-quality cells. Only one distinct set of sam-
ple BCs is expected to be found per cell; therefore, this can be used
to effectively remove doublets in the dataset. Contaminating reads
that did not belong to the maximum sample BC found per cell were
removed. RNA count matrixes were processed (log-normalized, scaled).
A principal component analysis (PCA) was performed on all genes
measured for RNA matrices. A probabilistic PCA was performed on all
variants measured for VAF matrices. This was followed by subsequent
UMAP embedding. For clustering, the shared nearest neighbor graph
was calculated and used as input for Louvain clustering.

Each cell that was defined as high quality was then used to call
variants using the GATK HaplotypeCaller (v4.2.3.0)°. Individual bam
files were generated using the cell BC of the high-quality cellsusing the
package sinto (v0.10.0). Each individual cell bam file was modified to
contain the cell BCin the read name and indexed using samtools (v1.17),
and the MAPQ scores were set from 255 (STAR output) to 60 and to be
compatibleasaninputinthe GATK HaplotypeCaller. GATK Haplotype-
Caller was run using no maximum read threshold per cell and using a
diploidy of two, and resulting vcf files were merged to yield a matrix
of cellsto variants compatible asinput for Seurat. Low-frequency vari-
ants (<0.1% for editing and <0.3% for primary human samples) were
removed, and remaining variants were inputinto the Ensembl Variant
Effect Predictor for functional annotation®. This functional annotation
was added as metadata. Genotypes of the GATK HaplotypeCaller were
added as an assay to the previous Seurat object, while the remaining
output was added as metadata. Wild-type alleles wereincluded based
ontheread depthfor agiven amplicon per cell. Both wild-type alleles
and variant alleles were excluded from subsequent analysis if the read
depth was low (<10 reads) or the genotype quality score of the GATK
HaplotypeCaller was low (<30 GQ).

For comparison of variance in the proof-of-concept experi-
ment, published 10x Genomics and ParseBio data (https://www.
parsebiosciences.com/customer-datasets/multi-omics-approach-
for-near-full-length-human-ipsc-transcriptomes-in-cardiomyocyte-
models/#download) were used™>.
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Cloning, molecular biology and generation of transgenic

iPS cells

For constitutive CRISPRi and PEmax and PEmax-MLHdnl1 cell lines,
the corresponding transgene was inserted into the AAVSI locus in
WTC-11iPS cells as previously described using specific TALENs*>®5,
The AAVSI targeting vector containing the homology arms, the
CAGG promotor and a WPRE was a kind gift from J. A. Knoblich
(Institute of Molecular Biotechnology of the Austrian Academy
of Science, Vienna BioCenter). For the CRISPRi plasmid, pHR-
UCOE-SFFV-dCas9-mCherry-ZIM3-KRAB (Addgene, 154473) was mod-
ified to pHR-UCOE-SFFV-dCas9-mCherry-KRAB-MECP2 with DNA
fragments ordered from Twist Bioscience containing KRAB-MECP2.
dCas9, KRAB-MECP2 and dTomato were amplified and cloned into
the AAVSI targeting vector described above with NEBuilder HiFi DNA
Assembly Master Mix (New England Biolabs, M5520). For the PEmax and
PEmax-MLHdn1 plasmids, the CRISPRi plasmid was used asabackbone
while inserting the PEmax or PEmax-P2A-MLHdn1 (Addgene, 174828)
sequence with NEBuilder HiFi DNA Assembly Master Mix. To generate
transgenic iPS cells expressing the CRISPRi, PEmax or PEmax-MLHdn1
transgene from the AAVS1locus, WTC-11iPS cells were electroporated
with the corresponding homology plasmid (3 pg per electroporation)
and two TALEN plasmids (0.75 pg per electroporation each) targeting
the AAVSIlocus (Addgene, 52341and 52342).iPS cells were dissociated
into a single-cell suspension and counted, and 1 x 10° cells were elec-
troporated using the CB-150 program of the 4D-Nucleofector System
and the P3 Primary Cell 4D-Nucleofector X Kit L (Lonza, V4XP-3024),
according to the manufacturer’s protocol and plated in E8 + RI. Cells
were sorted 7-10 days after electroporation for dTomato using a BD
Fortessainstrument running Diva (V9.0.1) sofware, plated atlow density
in E8 + RI, grown to colonies, picked and genotyped (Supplementary
Table 5). Positively genotyped clones were checked for homogenous
dTomato signal and validated for activity in a corresponding assay,
andthree clones of each cell line were subjected to agenotypingarray
screening using an Infinium Global Screening Array-24 kit (Illumina,
20030770) to check for chromosomal rearrangements in iPS cell
clones. Only clones that showed no or minor differences to the WTC-
11 wild-type parental cell line were used in this study.

gRNA/pegRNA design and library cloning

All gRNA and pegRNA libraries were cloned in pools. eQTLs were
selected based on high confidence from published data, and both
lowly expressed genes (counts per million (CPM) >150) and essential
genes in iPS cells were removed also based on published data®***"¢°,
eQTLs for the base editor screen were further filtered by overlap with
ATAC-seq peaks, expression (transcripts per million > 10) and compat-
ibility with transversion by adenine or cytosine base editors (A >G,
C>T,G>A, T>C)* Sites to introduce STOP codons were chosen
manually inthe selected genes. pegRNAs were designed using Prime-
Design (https://drugthatgene.pinellolab.partners.org), and linkers to
separate the pegRNA from the tevopreQ1 3’ stabilizing sequence were
designed using pegLIT (https://peglit.liugroup.us)’®”". For the CRISPRIi
experiment, the spacer sequences of the above pegRNAs were used
for eQTLs and STOP controls, whereas gRNAs targeting the TSS for
genes predicted to be affected by eQTLs were designed using CRISPick
(https://portals.broadinstitute.org/gppx/crispick/public), and NTCs
were chosen from the GeCKO-v2 library’> 7. BE gRNAs were designed
and selected based on highest predicted editing efficiency using the
BE-Hive tool”. The pegRNA screening vector was a kind gift fromJ.
A.Knoblich. This vector was modified to remove the ERT2-Cre-ERT2
sequence and the gRNA scaffold and include a3’ stabilizing tevopreQl
after theinsertion site for pegRNAs via Bbsl Golden Gate cloning. The
BE vectors were all-in-one cytosine or adenine base editor + guide
expression constructs (Addgene, 158581and 179097). The gRNA screen-
ing vector was a modified CROP-seq vector (Addgene, 86708) to also
express eGFP and include a distinct gRNA CS in the scaffold of the

gRNA’¢. Oligonucleotide pools for pegRNA and gRNA libraries were
checked for the presence of Bbsl and Esp3l sites within the spacer/RT/
PBS sites and ordered from IDT as oPools. pegRNA oligonucleotides
included a spacer sequence, PBS and RT with overhangs for amplifi-
cation that included Bbsl sequences compatible with Golden Gate
cloning. Spacer and PBS/RT sequences were separated by a constant
sequence containing two Esp3lsites forasecond round of Golden Gate
cloning to introduce the pegRNA scaffold. gRNA oligonucleotides
consisted of spacer sequences and overhangs for amplification that
included Bbsl sequences compatible with Golden Gate cloning. Oligo-
nucleotides were amplified (eight cycles) with compatible primers. The
purified PCR product was cloned into the respective pegRNA or gRNA
screening vector described above using Bbsl and Golden Gate cloning.
Electrocompetent bacteria (Lucigen, 60242-1) were electroporated
(10 pF, 600 Q,1,800V, E=184 V cm™) with purified ligation product
and grown in a pool for 10 h at 30 °C before extracting plasmid DNA.
For pegRNA and base editor guide libraries, a scaffold sequence was
ordered with overhangsthatincluded Esp3l overhangs (IDT), amplified
with complementary primers (eight cycles), purified and cloned as
described above using Esp3I Golden Gate cloning. Sequence overviews
for cloning of the respective gRNA/pegRNA libraries can be found in
Supplementary Table 5.

Virus production, infection of human iPS cells and lipofection
of humaniiPS cells

Lentiviruses were produced in HEK293T (ATCC, CRL-3216) cells grown
inDMEM supplemented with10% FBS, 1x GlutaMAX (Gibco, 35050061),
100 U ml™ penicillin-streptomycin (Gibco, 15140122) and 1x MEM
nonessential amino acids (Gibco, 11140050) and coated using VSV-G.
The day before transfection, HEK293T cells were plated at 80% conflu-
ency, plasmids were lipofected using Lipofectamine 3000 Transfection
reagent (L3000001), and the cells were split 1:10 5 h after lipofection.
The supernatant was collected 3 days after lipofection, cell debris was
pelleted at200gfor 5 minat4 °C, the remaining supernatant was spun
at28,000gfor 5 h,and the virus pellet was resuspended in the appropri-
ate volume of E8 + RI. Onthe day of infection, human iPS cells were split
1:2.5 2 h before infection using Accutase. Infections were performed
overnight in E8 + RI. Medium was replaced the next day with E8. For
some editing experiments, constructs were only expressed transiently
in human iPS cells. For this, transfection was performed using Lipo-
fectamine Stem Transfection Reagent (STEM00003) according to the
manufacturer’s protocol.

Target selection and subsampling for panel size testing

Public variant information data for the WTC-11 cell line was down-
loaded from University of California, Santa Cruz (https://s3-us-west-2.
amazonaws.com/downloads.allencell.org/genome-sequence/
AH77TTBBXX_DS-229105_GCCAAT _recalibrated.vcf.gz). Variants
were filtered using bcftools for heterozygous variants and quality
(GT ="het’ filter = ‘PASS’,format/DP > 70, format DP <150, QUAL >1,000,
INFO/MQ > 59.8) and subset to contain single-nucleotide poly-
morphisms, insertions/deletions or multinucleotide polymorphisms.
Candidate cis-regulatory elements (cCREs) for five human iPS cell
lines (H1, H7, H9, iPS DF 6.9 and iPS DF 19.11) were obtained from
SCREEN (https://screen.encodeproject.org), and corresponding
regulatory elements were subset from these®. Genomic regions
were defined as OEGs or NOEGs if the gene overlapping that genomic
regionwas expressed in bulk RNA-seq data (>10 CPM)°. These OEG or
NOEG regions were then overlapped with the filtered WTC .vcffile to
select for regions containing high-quality variant information. One
hundred and twenty regions were randomly subsampled for each
cCRE within the OEG and NOEG classes, and primers were designed
as described above. Each cCRE with OEG and NOEG was equally rep-
resented in both the total and shared panels. Genes were subset
into highly (>400 CPM), medium (<400, >40) and lowly (<40, >4)
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expressed gene groups. Primers were designed as described above.
After determining high-quality cellsin all panels, as described above,
they were subset from the bam file, and reads per cell for gDNA and
RNA were scaled according to panel size in away so that the average
number of reads per cell for shared gDNA and RNA targets was the
same. Variants were called as described above.

Maturation state assignment in primary tumor samples and
immunoglobulin light chain restriction analysis

B cell maturation states were mapped to each tumor sample from a
published reactive lymph node single-cell RNA-sequencing dataset
through shared gene expression features using previously described
methods***¢. Gene expression was used to determine immunoglobulin
light chain restriction. Log-normalized counts (without batch effect
correction to prevent bias introduced by sample integration) were
used tofind transfer anchors and project samples on the reference PCA
(50 dimensions) and UMAP (2 dimensions) reductions. The expression
of genes encoding immunoglobulin-k (/GKC) and immunoglobulin-A
(IGLC1-IGLC?) light chain was used to determine cell malignancy
through light chain restriction®.

Data analysis for primary B cell lymphoma samples

Separate NGS sequencing libraries for gDNA and RNA were ana-
lyzed with SDRranger, and variants were called as described above.
Low-frequency variants (<5% or less than 30 heterozygous/homozy-
gous variants) were excluded from the analysis. GO term analysis was
performed using the R package topGO (v2.54.0), the weigthO1 algo-
rithm and a Fisher’s exact test. Enrichment for biological processes
was computed for the top 21 differentially expressed genes in the LZ
versus DZ across all samples versus all genes measured.

Statistics and reproducibility

No data were excluded from analysis, and cutoffs for defining
high-quality cellsin SDR-seq were set as described above. Differential
gene expression testing in the single-cell data was performed using
MAST and by subsetting cellsin the respective genotype withina given
cellor perturbation state’”. Differential abundance testing of variants
between maturation states in primary B cell ymphoma samples was
performed using x? testing, followed by adjusting P values with the
Benjamini-Hochberg method. All box plots shown in this study show
the center line as the median, box limits indicate 25th and 75th per-
centiles, and whiskersindicate 1.5x theinterquartile range; all outliers
aredisplayed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Sequencing data and processed data for nonprimary human sam-
ples are available on Gene Expression Omnibus under accession
number GSE268646. Sequencing data and processed data for pri-
mary human samples are available on the European Genome-
Phenome Archive under study number EGAS50000000374 and
dataset ID EGAD50000000551. The dataset on European Genome-—
Phenome Archive is read-only under ega-archive.org/datasets/
EGAD50000000551. Access to the data will be granted for appropri-
ate use in research and will be governed by the provisions laid out in
the terms contained in the Data Access Agreement. Source data are
provided with this paper.

Code availability

Allrelevant code will be deposited on GitHub upon publication. Code
containing SDRranger to generate count/read matrices from RNA or
gDNA raw sequencing data is available under https://github.com/

hawkjo/SDRranger. Code for TAP-seq prediction, generation of custom
STARreferences and processing of the datais available under https://
github.com/DLindenhofer/SDR-seq.
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Data collection  SDR-seq was performed using the Tapestri microfluidic device from Mission Bio. Flow cytometry was performed using BD Fortessa
instruments running Diva (V9.0.1) software. lllumina sequencers (HiSeq and NextSeq) were used for NGS experiments.

Data analysis Data analysis was performed using SDRranger (v1.0) to generate count/read matrices from RNA or gDNA NGS data (https://github.com/
hawkjo/SDRranger). Code for TAP-seq prediction, generation of custom STAR references and processing of the data is available under https://
github.com/DLindenhofer/SDR-seq. Packages used were AnnotationDbi (1.64.1), BiocManager (1.30.25), BiocParallel (1.36.0), biomaRt
(2.58.2), Biostrings (2.70.3), BSgenome (1.70.2), BSgenome.Mmusculus.UCSC.mm10 (1.4.3), cardelino (1.4.0), circlize (0.4.16), data.table
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(1.6.5), org.Hs.eg.db (3.18.0), patchwork (1.3.0), pcaMethods (1.94.0), pheatmap (1.0.12), purrr (1.0.4), RColorBrewer (1.1.3), readr (2.1.5),
readx| (1.4.5), reshape2 (1.4.4), Rmisc (1.5.1), rtracklayer (1.62.0), scales (1.4.0), Seurat (5.3.0), stringr (1.5.1), TAPseq (1.14.1), tibble (3.2.1),
tidyr (1.3.1), tidyverse (2.0.0), topGO (2.54.0), STAR (2.7.11a), Python (3.8.0), GATK HaplotypeCaller (4.2.3.0), sinto (0.10.0) and samtools
(1.17).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Sequencing data and processed data for non-primary human data is available on GEO under accession number GSE268646. Sequencing data and processed data for
primary human data is available on EGA under study number EGAS50000000374 and dataset ID EGAD50000000551. The dataset on EGA is read-only under ega-
archive.org/datasets/EGAD50000000551. Access to the data will be granted for appropriate use in research and will be governed by the provisions laid out in the
terms contained in the Data Access Agreement. Variant information for WTC-11 human iPSCs was downloaded from UCSC (https://s3-us-west-2.amazonaws.com/
downloads.allencell.org/genome-sequence/AH77TTBBXX_DS-229105_GCCAAT _recalibrated.vcf.gz). Candidate cis-regulatory elements (cCRE) for five human iPSC
lines (H1, H7, H9, iPS DF 6.9, iPS DF 19.11) were obtained from SCREEN (https://screen.encodeproject.org). iPSCs data for ParseBio data was obtained from https://
www.parsebiosciences.com/customer-datasets/multi-omics-approach-for-near-full-length-human-ipsc-transcriptomes-in-cardiomyocyte-models/#download.
NIH-3T3 data for TAP-seq primer prediction was obtained from https://www.10xgenomics.com/datasets/500-1-1-mixture-of-human-hek-293-t-and-mouse-nih-3-
t-3-cells-3-It-v-3-1-chromium-x-3-1-low-6-1-0. WTC-11 data for TAP-seq primer prediction and comparison of gene expression variance was obtained from https://
www.ebi.ac.uk/biostudies/arrayexpress using accession number E-MTAB-6687. DNA sequences for custom gDNA and RNA references used for alignment were
obtained in R using the BSgenome (1.70.2) package utilizing the "BSgenome.Hsapiens.UCSC.hg38" genome" (genome hg38, based on assembly GRCh38.p14 since
2023/01/31).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender No sex or gender-based analysis were performed as they were not relevant in this study. Informed consent from every
patient was gathered beforehand to collect gender data and was determined based on self-reporting. Gender is reported in
the EGA repository in the metadata.

Reporting on race, ethnicity, or  This information was not collected. Therefore not applicable.
other socially relevant

groupings

Population characteristics Informed consent from every patient was gathered beforehand regarding age, diagnosis and treatment. None of this
metadata is taken in consideration in the data analysis in this manuscript. Diagnosis was either follicular lymphoma (FL1 and
FL2) or germinal center subtype diffuse large B-cell lymphoma (GCB1). Age at time of sampling was 59 (FI1), 74 (FI2) and 45
(GCB1). Sex was female for FL1 and male for FL2 and GCB1. Ann-Arbor clinical stage at time of sampling was IIIA (FI1), IVA
(FI2) and IVB (GCB1). Relapse status at time of sampling was diagnosis (FL1 and GCB1) and relapse (FI2).

Recruitment Recruitment for this retrospective study was done from suitable biobanked material at University Hospital Heidelberg.

Ethics oversight The study (S-254/2016) was approved by University of Heidelberg’s Ethics Committee. We obtained informed consent from

every patient beforehand.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size No statistical methods were used to predetermine sample sizes. Instead, sample sizes were guided by the technical limitations of the Tapestri
microfluidic device, which yields approximately 9,000 cells per run. This throughput is consistent with other widely used single-cell
microfluidic platforms, such as 10x Genomics. For each experiment, the number of cells analyzed was chosen to be sufficient for qualitative
and comparative assessment of assay performance and biological signal detection in the context o method development.

The manuscript primarily describes SDR-seq, and the experimental design focuses on demonstrating technical feasibility, robustness, and
versatility. Robustness was shown by reproducing the assay across multiple independent runs, yielding reproducible combined single-cell
readouts of gDNA and RNA in the same cell. Fixation condition effects were assessed in a multiplexed design within a single run, allowing
direct cell-to-cell comparison under identical processing conditions. Primer panel size effects were evaluated in separate SDR-seq runs due to
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the need for distinct PCR panels, and sufficient cells were obtained in each run to assess performance and coverage.

In perturbation experiments, the observed low editing efficiency limited the ability to interpret a large number of eQTLs, but the data
generated were sufficient to highlight this challenge and inform future optimization. Finally, samples from three B-cell lymphoma patients
were processed across two independent SDR-seq runs. The sample size was adequate to demonstrate the applicability of the method ,
performing differential abundance testing of variants and differential gene expression analysis comparing distinct subclasses of cells within
each patient.

Overall, sample sizes were selected to balance the throughput limits of the technology with the goal of establishing method feasibility,
reproducibility, and practical use cases. The number of cells and samples per experiment was sufficient to achieve these aims.

Data exclusions  Low quality cells were removed for downstream processing. Detailed thresholds set for each experiment can be found in https://github.com/
DLindenhofer/SDR-seq. A second GCB sample was intended to be analyzed in this study. Low viability after thawing and dead cell removal
prohibited the inclusion of this sample.

Replication SDR-seq was shown to work in two different fixation conditions and across different panel sizes, perturbation assays and sample types. All
attempts of performing SDR-seq as described in the manuscript were successful. Overall these were 10 independent SDR-seq runs.

Randomization  Not applicable in this study as experiments doing comparative analysis were assayed in a pooled setting.

Blinding The experimenters were not blinded. Experimental procedures were automated and standardized, and data analyses were carried out
predominantly using computational pipelines without manual intervention. The reported results are primarily descriptive and based on
objective readouts such as sequencing metrics, read counts, and computationally derived molecular profiles. As such, the experimenter had
no opportunity to influence the outcomes.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
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Plants

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) The HEK293 line was purchased from ATCC (CRL-3216). The WTC-11 iPSCs (GM25256)were purchased from the Coriell
Institute for Medical Research. The NIH-3T3 cell line was purchased from DSMZ (ACC 59)

Authentication None of the cell lines were independently authenticated.
Mycoplasma contamination Cell cultures were routinely (every three months) tested and confirmed negative for mycoplasma.

Commonly misidentified lines  no commonly misidentified lines have been used in this study.
(See ICLAC register)
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Flow Cytometry

Plots

Confirm that:
g The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

& A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation For flow cytometry analysis iPSCs were prepared in a single cell suspension using Accutase (StemCell Technologies - #07922).
This was followed by filtering through a 35 um cell strainer.
Instrument BD Fortessa
Software FACS Diva
Cell population abundance A minimum of 20000 single cells was analyzed for each condition at each timepoint.
Gating strategy Single cells were gated using forward and side scatters. Amplifier settiings were chosen to clearly display negative and

positive populations. Gating strategies are provided in the Extended Data Fig. 6e directly next to each flow cytometry plot.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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