Last updated: 2021-05-05

Checks: 5 2

Knit directory: CLLproteomics_publish_revision/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200227) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

The following chunks had caches available:
  • unnamed-chunk-14
  • unnamed-chunk-15

To ensure reproducibility of the results, delete the cache directory manuscript_S1_Overview_cache and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE when running wflow_build() or wflow_publish().

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 3fb50c5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/manuscript_S1_Overview_cache/
    Ignored:    code/.DS_Store
    Ignored:    code/.Rhistory
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  analysis/.trisomy12_norm.pdf
    Untracked:  analysis/cohortComposition_all.pdf
    Untracked:  analysis/manuscript_S1_Overview.Rmd
    Untracked:  analysis/manuscript_S2_genomicAssociation.Rmd
    Untracked:  analysis/manuscript_S3_trisomy12.Rmd
    Untracked:  analysis/manuscript_S4_trisomy19.Rmd
    Untracked:  analysis/manuscript_S5_IGHV.Rmd
    Untracked:  analysis/manuscript_S6_del11q.Rmd
    Untracked:  analysis/manuscript_S7_SF3B1.Rmd
    Untracked:  analysis/manuscript_S8_drugResponse_Outcomes.Rmd
    Untracked:  analysis/manuscript_S9_STAT2.Rmd
    Untracked:  analysis/plot_PC1_PC2.pdf
    Untracked:  analysis/timsTOF_validate.Rmd
    Untracked:  code/utils.R
    Untracked:  data/Annotation file March 2021.xlsx
    Untracked:  data/CAS9results.xlsx
    Untracked:  data/CNV_onChrom.RData
    Untracked:  data/ComplexParticipantsPubMedIdentifiers_human.txt
    Untracked:  data/Fig1A.png
    Untracked:  data/IGLV321_SupplementalTables_R2.xlsx
    Untracked:  data/MOFAout.RData
    Untracked:  data/MOFAout_atLeast3.RData
    Untracked:  data/STATexprPCR.xlsx
    Untracked:  data/Western_blot_results_20210309_short.csv
    Untracked:  data/Western_blot_results_separate_blots.xlsx
    Untracked:  data/allComplexes.txt
    Untracked:  data/ddsrna_enc.RData
    Untracked:  data/exprCNV_enc.RData
    Untracked:  data/geneAnno.RData
    Untracked:  data/gmts/
    Untracked:  data/ic50.RData
    Untracked:  data/mofaIn.RData
    Untracked:  data/mofaIn_atLeast3.RData
    Untracked:  data/patMeta_enc.RData
    Untracked:  data/pepCLL_lumos_enc.RData
    Untracked:  data/protMOFA.RData
    Untracked:  data/proteins_in_complexes
    Untracked:  data/proteomic_LUMOS_2pep_enc.RData
    Untracked:  data/proteomic_explore_enc.RData
    Untracked:  data/proteomic_independent_all_enc.RData
    Untracked:  data/proteomic_independent_enc.RData
    Untracked:  data/proteomic_timsTOF_enc.RData
    Untracked:  data/screenData_enc.RData
    Untracked:  data/setToPathway.txt
    Untracked:  data/survival_enc.RData
    Untracked:  output/MSH6_splicing.svg
    Untracked:  output/SUGP1_splicing.svg
    Untracked:  output/deResList.RData
    Untracked:  output/deResListBatch2.RData
    Untracked:  output/deResListRNA.RData
    Untracked:  output/deResListRNA_allGene.RData
    Untracked:  output/deResList_WBC.RData
    Untracked:  output/deResList_batch1.RData
    Untracked:  output/deResList_batch3.RData
    Untracked:  output/deResList_independent.RData
    Untracked:  output/deResList_timsTOF.RData
    Untracked:  output/dxdCLL.RData
    Untracked:  output/dxdCLL2.RData
    Untracked:  output/exprCNV.RData
    Untracked:  output/geneAnno.RData
    Untracked:  output/int_pairs.csv
    Untracked:  output/lassoResults_CPS.RData
    Untracked:  output/resOutcome_batch1.RData
    Untracked:  output/resOutcome_batch13.RData
    Untracked:  output/resOutcome_batch2.RData
    Untracked:  output/resOutcome_batch3.RData

Unstaged changes:
    Modified:   analysis/_site.yml
    Deleted:    analysis/analysisSF3B1.Rmd
    Deleted:    analysis/comparePlatforms.Rmd
    Deleted:    analysis/compareProteomicsRNAseq.Rmd
    Deleted:    analysis/correlateCLLPD.Rmd
    Deleted:    analysis/correlateGenomic.Rmd
    Deleted:    analysis/correlateGenomic_removePC.Rmd
    Deleted:    analysis/correlateMIR.Rmd
    Deleted:    analysis/correlateMethylationCluster.Rmd
    Modified:   analysis/index.Rmd
    Deleted:    analysis/predictOutcome.Rmd
    Deleted:    analysis/processProteomics_LUMOS.Rmd
    Deleted:    analysis/processProteomics_timsTOF.Rmd
    Deleted:    analysis/qualityControl_LUMOS.Rmd
    Deleted:    analysis/qualityControl_timsTOF.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Load packages and datasets

library(limma)
library(DESeq2)
library(cowplot)
library(proDA)
library(pheatmap)
library(SummarizedExperiment)
library(tidyverse)

#load datasets
load("../data/patMeta_enc.RData")
load("../data/ddsrna_enc.RData")
load("../data/proteomic_explore_enc.RData")
source("../code/utils.R")
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE, dev = c("png","pdf"))

Overview of the patient characteristics in our study cohort

A table shown the clinical characteristics

(all cohorts combined)

labelBatch <- c(batch1 = "batch1", batch2 = "batch3", batch3 = "batch2")
patInfo <- sampleTab %>% 
  filter(!lowQuality, !duplicatedPat) %>%
  select(encID, leukCount, cohort,batch) %>%
  mutate(batch = labelBatch[batch]) %>%
  arrange(batch, encID) %>%
  left_join(select(patMeta, Patient.ID, IGHV.status, trisomy12), by = c(encID = "Patient.ID")) %>%
  left_join(select(survT, patID, OS, died, TTT, treatedAfter, TTT, age, sex, pretreat), by = c(encID = "patID")) %>%
  mutate(`No.` = seq(nrow(.))) %>%
  select(No., encID, age, sex, IGHV.status, trisomy12, leukCount, OS, died, TTT, treatedAfter, pretreat, cohort, batch)

patInfoTab <- patInfo %>% #format
  mutate(trisomy12 = ifelse(trisomy12 %in% "1", "yes", "no"),
         died = ifelse(is.na(OS),NA, ifelse(died,"yes","no")),
         treatedAfter = ifelse(is.na(TTT), NA, ifelse(treatedAfter, "yes","no")),
         pretreat = ifelse(pretreat %in% 1, "yes","no"),
         age = as.integer(age),
         OS = formatC(OS, digits=1),
         TTT = formatC(TTT, digits=1)) %>%
  mutate_all(replace_na,"NA") %>%
  #arrange(cohort, encID) %>%
  dplyr::rename(ID = encID,
                IGHV = IGHV.status,
                `WBC count` = leukCount,
                `Survival time (years)` = OS,
                Died = died,
                `Time to treatment (years)` = TTT,
                `Treatment after sampling` = treatedAfter,
                `Treatment before sampling` = pretreat)

patInfoTab %>% DT::datatable()

Prepare summary matrix for genomics

Get mutations with at least 5 cases

geneMat <-  patMeta[match(patInfo$encID, patMeta$Patient.ID),] %>%
  select(-Methylation_Cluster) %>%
  mutate(IGHV.status = ifelse(!is.na(IGHV.status), ifelse(IGHV.status == "M",1,0),NA)) %>%
  mutate(cohort = sampleTab[match(Patient.ID, sampleTab$encID),]$cohort) %>%
  mutate(cohort = ifelse(cohort == "exploration",1,0)) %>%
  mutate_if(is.factor, as.character) %>%
  mutate_at(vars(-Patient.ID), as.numeric) %>% #assign a few unknown mutated cases to wildtype
  data.frame() %>% column_to_rownames("Patient.ID")


geneMat <- geneMat[,apply(geneMat,2, function(x) sum(x %in% 1, na.rm = TRUE))>=5]
#Remove some dubious annotations
geneMat <- geneMat[,!colnames(geneMat) %in% c("del5IgH","gain2p","IgH_break")]
useGeneForComposition <- colnames(geneMat)

useGeneForComposition <- unique(c(useGeneForComposition,"U1","cohort","IGHV.status"))
geneMat <- geneMat[,useGeneForComposition]

Plot to summarise genomic background

Separate CNV table and mutation table

cnvCol <- colnames(geneMat)[grepl("del|trisomy|IGHV|cohort",colnames(geneMat))]
cnvMat <- geneMat[,cnvCol]
mutMat <- geneMat[,!colnames(geneMat) %in% cnvCol]
cnvMat <- cnvMat[,names(sort(colSums(cnvMat == 1,na.rm=TRUE)))]

#Manually assign CNV feature order for better visualization
cnvMat <- cnvMat[,c("del17p","del11q","del13q","trisomy19","trisomy12","IGHV.status","cohort")]


mutMat <- mutMat[,names(sort(colSums(mutMat == 1, na.rm=TRUE)))]
geneMat <- cbind(mutMat,cnvMat)
geneMat[is.na(geneMat)] <- -1
sortTab <- function(sumTab) {
  i <- ncol(sumTab)
  #print(i)
  if (i == 1) {
    return(rownames(sumTab)[order(sumTab[,i])])
  }
  allLevel <- sort(unique(sumTab[,i]))
  orderRow <- lapply(allLevel, function(n) {
    sortTab(sumTab[sumTab[,i] %in% n, seq(1,i-1), drop = FALSE])  
  }) %>% unlist() %>% c()
  return(orderRow)
}

sortedPat <- rev(sortTab(geneMat))
geneMat <- geneMat[,!colnames(geneMat) %in% c("IGHV.status","cohort")]
plotTab <- geneMat %>% as_tibble(rownames="patID") %>% mutate_all(as.character) %>%
  pivot_longer(-patID, names_to = "var", values_to = "value") %>%
  mutate(status = case_when(
    value == -1 ~ "NA",
    value == 0 ~ "WT",
    value == 1 & var %in% cnvCol ~ "CNA",
    value == 1 & !var %in% cnvCol ~ "gene mutation"
  )) %>% 
  mutate(var = factor(var, levels = c(colnames(mutMat),colnames(cnvMat))), 
         patID = factor(patID, levels = sortedPat),
         status = factor(status, levels =c("WT","CNA","gene mutation","NA")))

# get number of mutations
sumMutTab <- group_by(plotTab, var) %>%
  summarise(num=sum(value %in% 1))

formatedName <- lapply(levels(plotTab$var), function(n) {
  num <- filter(sumMutTab, var == n)$num
  if(n %in% cnvCol) {
    nameCNV <- c(del17p = "del(17)(p13)", del11q = "del(11)(q22.3)", del13q = "del(13)(q14)")
    if (n %in% names(nameCNV)) {
      n <- nameCNV[n]
    }
    sprintf("%s [%s]",n, num)
  } else {
    bquote(italic(.(n))~"["*.(num)*"]")
  }
})
pMain <- ggplot(plotTab, aes(x=patID, y = var, fill = status)) + 
  geom_tile(color = "grey80") +
  theme_void() + 
  scale_fill_manual(values = c("gene mutation" = colList[5],
                               "CNA"= colList[4],
                               "WT" ="white", 
                               "NA" = "grey80"),
                    name = "aberrations") +
  scale_y_discrete(labels = formatedName) +
  theme(axis.text.x =  element_blank(),
        axis.text.y = element_text(size=11, face = "bold", hjust = 1),
        axis.ticks.length.y = unit(0.05,"npc")) +
  ylab("") + xlab("")

Column annotations for other characteristics

Cohort

cohortTab <- select(patInfo, encID, cohort) %>%
  mutate(patID = encID, status = cohort, type = "cohort") %>%
  mutate(status = ifelse(status == "exploration","main","additional")) %>%
  mutate(status = factor(status, levels = c("main","additional"))) %>%
  filter(patID %in% sortedPat) %>%
  mutate(patID = factor(patID, levels = sortedPat)) %>%
  select(patID, type, status)

pCohort <- ggplot(cohortTab, aes(x=patID, y = type, fill = status)) + 
  geom_tile(color = NA) +
  theme_void() + xlab("") + ylab("") +
  coord_cartesian(expand = FALSE) +
  scale_fill_manual(values = c(main=colList[3],additional = colList[2]), name = "cohort") +
  theme(axis.text.y = element_text(face = "bold", size=11),
        axis.ticks.length.y = unit(0.05,"npc"))

IGHV status

ighvTab <- select(patMeta, Patient.ID, IGHV.status) %>%
  mutate(patID = Patient.ID, status = IGHV.status, type = "IGHV") %>%
  filter(patID %in% sortedPat) %>%
  mutate(patID = factor(patID, levels = sortedPat)) %>%
  select(patID, type, status) %>%
  mutate(status = ifelse(is.na(status),"NA",status)) %>%
  mutate(status = factor(status, levels = c("M","U","NA")))

pIGHV <- ggplot(ighvTab, aes(x=patID, y = type, fill = status)) + 
  geom_tile(color = NA) +
  theme_void() + xlab("") + ylab("") +
  coord_cartesian(expand = FALSE) +
  scale_fill_manual(values = c(M="black",U="white","NA" = "grey80"), name = "IGHV") +
  theme(axis.text.y = element_text(face = "bold", size=11),
        axis.ticks.length.y = unit(0.05,"npc"))

#pIGHV

Sex

sexTab <- select(survT, patID, sex) %>%
  mutate(status = as.character(sex), type = "sex") %>%
  filter(patID %in% sortedPat) %>%
  mutate(patID = factor(patID, levels = sortedPat),
         status = case_when(status %in% "m" ~ "male",
                            status %in% "f" ~ "female")) %>%
  select(patID, type, status)

pSex <- ggplot(sexTab, aes(x=patID, y = type, fill = status)) + 
  geom_tile(color = NA) +
  theme_void() + xlab("") +  ylab("") +
  coord_cartesian(expand = FALSE) +
  scale_fill_manual(values = c(male=colList[7],female=colList[5]), name = "sex") +
  theme(axis.text.y = element_text(face = "bold",size=11),
        axis.ticks.length.y = unit(0.05,"npc"))
#pSex

Age

agePlotTab <- survT %>% filter(patID %in% sortedPat) %>%
  select(patID, age) %>%
  mutate( status = age, type = "age") %>%
  mutate(patID = factor(patID, levels = sortedPat)) %>%
  select(patID, type, status)


pAge <- ggplot(agePlotTab, aes(x=patID, y = type, fill = status)) + 
  geom_tile(color = NA) +
  theme_void() + xlab("") +  ylab("") +
  coord_cartesian(expand = FALSE) +
  scale_fill_viridis_b(name = "age") +
  theme(axis.text.y = element_text(face = "bold",size=11),
        axis.ticks.length.y = unit(0.05,"npc"))
#pAge

Generate combined summarisation plots

Main plot

lMain <- get_legend(pMain + geom_tile(color = "black") )
lAge <- get_legend(pAge + geom_tile(color = "black") )
lSex <- get_legend(pSex+ geom_tile(color = "black") )
lIGHV <- get_legend(pIGHV+ geom_tile(color = "black") )
lCohort <- get_legend(pCohort + geom_tile(color = "black"))

noLegend <- theme(legend.position = "none")
mainPlot <- plot_grid(pAge + noLegend, pSex + noLegend, 
                      pCohort + noLegend,
                      pIGHV + noLegend,
                     pMain + noLegend, ncol=1, align = "v",
                     rel_heights = c(rep(1,4),18))


legendPlot <- plot_grid(lAge, lSex, lIGHV, lMain,ncol=1, align = "hv")

plot_grid(mainPlot)

Figure legend

legendPlot <- plot_grid(lAge, lSex, lCohort, lIGHV, lMain,nrow=1, align = "hv")

plot_grid(legendPlot, ncol=1, align = "hv")

Number of detected proteins

Proteins identified in at least in 50% of the samples

dim(protCLL)
[1] 3314   91

RNA-protein associations

Preprocess transcriptomic and proteomic data

Preprocessing RNA sequencing data

dds <- estimateSizeFactors(dds)
sampleOverlap <- intersect(colnames(protCLL), colnames(dds))
geneOverlap <- intersect(rowData(protCLL)$ensembl_gene_id, rownames(dds))
ddsSub <- dds[geneOverlap, sampleOverlap]
protSub <- protCLL[match(geneOverlap, rowData(protCLL)$ensembl_gene_id), sampleOverlap]

#how many gene don't have RNA expression at all?
noExp <- rowSums(counts(ddsSub)) == 0

#remove those genes in both datasets
ddsSub <- ddsSub[!noExp,]
protSub <- protSub[!noExp,]

protSub <- protSub[!duplicated(rowData(protSub)$name)]

geneOverlap <- intersect(rowData(protSub)$ensembl_gene_id, rownames(ddsSub))

ddsSub.vst <- varianceStabilizingTransformation(ddsSub)

Calculate correlations between protein abundance and RNA expression

rnaMat <- assay(ddsSub.vst)
proMat <- assays(protSub)[["count_combat"]]
rownames(proMat) <- rowData(protSub)$ensembl_gene_id

corTab <- lapply(geneOverlap, function(n) {
  rna <- rnaMat[n,]
  pro.raw <- proMat[n,]
  res.raw <- cor.test(rna, pro.raw, use = "pairwise.complete.obs")
  tibble(id = n,
         p = res.raw$p.value,
         coef = res.raw$estimate)
}) %>% bind_rows() %>%
  arrange(desc(coef)) %>% mutate(p.adj = p.adjust(p, method = "BH"),
                                 symbol = rowData(dds[id,])$symbol,
                                 chr = rowData(dds[id,])$chromosome)

Plot the distribution

corHistPlot <- ggplot(corTab, aes(x=coef)) + geom_histogram(position = "identity", col = colList[2], alpha =0.3, bins =50) +
  geom_vline(xintercept = 0, col = colList[1], linetype = "dashed") + xlim(-0.7,1) +
      xlab("Pearson's correlation coefficient") + theme_half +
  ggtitle("Correlation between mRNA and protein expression") +
  theme(axis.text = element_text(size=18), axis.title = element_text(size=18))
corHistPlot

Median Pearson’s correlation coefficient

median(corTab$coef)
[1] 0.1839246

Influence of overall protein/RNA abundance on correlation

medProt <- rowMedians(proMat,na.rm = T)
names(medProt) <- rownames(proMat)
medRNA <- rowMedians(rnaMat, na.rm = T)
names(medRNA) <- rownames(rnaMat)

plotTab <- corTab %>% mutate(rnaAbundance = medRNA[id], protAbundance = medProt[id])
plotList <- list()

plotList[["rna"]] <- plotCorScatter(plotTab,"coef","rnaAbundance",
                                    showR2 = FALSE, annoPos = "left",
                                    x_lab ="Correlation coefficient",
                                    y_lab = "Median RNA expression",
                                    title = "", dotCol = colList[5], textCol = colList[1])

plotList[["protein"]] <- plotCorScatter(plotTab,"coef","protAbundance",
                                    showR2 = FALSE, annoPos = "left",
                                    x_lab ="Correlation coefficient",
                                    y_lab = "Median protein expression",
                                    title = "", dotCol = colList[6], textCol = colList[1])

cowplot::plot_grid(plotlist = plotList, ncol =2)

Plot protein-RNA correlation for selected genes

Good correlations

geneList <- c("ZAP70","CD22","CD79A")
plotList <- lapply(geneList, function(n) {
  geneId <- rownames(dds)[match(n, rowData(dds)$symbol)]
  stopifnot(length(geneId) ==1)
  plotTab <- tibble(x=rnaMat[geneId,],y=proMat[geneId,], IGHV=protSub$IGHV.status)
  coef <- cor(plotTab$x, plotTab$y, use="pairwise.complete")
  annoPos <- ifelse (coef > 0, "left","right")
  plotCorScatter(plotTab, "x","y", showR2 = FALSE, annoPos = annoPos, x_lab = "RNA expression", shape = "IGHV",
                 y_lab ="Protein expression", title = n,dotCol = colList[4], textCol = colList[1], legendPos="none")
})
goodCorPlot <- cowplot::plot_grid(plotlist = plotList, ncol =3)
goodCorPlot

Bad correlations

geneList <- c("DTNBP1","PRPF19")
plotList <- lapply(geneList, function(n) {
  geneId <- rownames(dds)[match(n, rowData(dds)$symbol)]
  stopifnot(length(geneId) ==1)
  plotTab <- tibble(x=rnaMat[geneId,],y=proMat[geneId,], IGHV=protSub$IGHV.status)
  coef <- cor(plotTab$x, plotTab$y, use="pairwise.complete")
  annoPos <- ifelse (coef > 0, "left","right")
  plotCorScatter(plotTab, "x","y", showR2 = FALSE, annoPos = annoPos, x_lab = "RNA expression",
                 y_lab ="Protein expression", title = n,dotCol = colList[4], textCol = colList[1],
                 shape = "IGHV", legendPos = "none")
})
badCorPlot <- cowplot::plot_grid(plotlist = plotList, ncol =2)
badCorPlot

Principal component analysis

Calculate PCA

We will perform principal component analysis to identify and annotate the major dimensions in our dataset.

#remove genes on sex chromosomes
protCLL.sub <- protCLL[!rowData(protCLL)$chromosome_name %in% c("X","Y"),]
plotMat <- assays(protCLL.sub)[["QRILC_combat"]]
sds <- genefilter::rowSds(plotMat)
plotMat <- as.matrix(plotMat[order(sds,decreasing = TRUE),])
colAnno <- colData(protCLL)[,c("gender","IGHV.status","trisomy12")] %>%
  data.frame()
colAnno$trisomy12 <- ifelse(colAnno$trisomy12 %in% 1, "yes","no")

pcOut <- prcomp(t(plotMat), center =TRUE, scale. = TRUE)
pcRes <- pcOut$x
eigs <- pcOut$sdev^2
varExp <- structure(eigs/sum(eigs),names = colnames(pcRes))

All proteins are included for PCA analysis

Correlation test between PCs and IGHV.status/trisomy12

corTab <- lapply(colnames(pcRes),  function(pc) {
  ighvCor <- t.test(pcRes[,pc] ~ colAnno$IGHV.status, var.equal=TRUE)
  tri12Cor <- t.test(pcRes[,pc] ~ colAnno$trisomy12, var.equal=TRUE)
  tibble(PC = pc, 
         feature=c("IGHV", "trisomy12"),
         p = c(ighvCor$p.value, tri12Cor$p.value))
}) %>% bind_rows() %>% mutate(p.adj = p.adjust(p)) %>%
  filter(p <= 0.05) %>% arrange(p)
corTab
# A tibble: 9 x 4
  PC    feature               p      p.adj
  <chr> <chr>             <dbl>      <dbl>
1 PC1   trisomy12 0.00000000740 0.00000135
2 PC6   trisomy12 0.0000000919  0.0000166 
3 PC3   IGHV      0.0000253     0.00455   
4 PC2   trisomy12 0.0000263     0.00470   
5 PC5   IGHV      0.000308      0.0549    
6 PC1   IGHV      0.000459      0.0813    
7 PC90  trisomy12 0.0109        1         
8 PC11  IGHV      0.0186        1         
9 PC6   IGHV      0.0302        1         

The first three components are shown to be correlated with trisomy12 and IGHV status.

Plot PC1 and PC2

plotTab <- pcRes %>% data.frame() %>% cbind(colAnno[rownames(.),]) %>%
  rownames_to_column("patID") %>% as_tibble()

plotPCA12 <- ggplot(plotTab, aes(x=PC1, y=PC2, col = trisomy12, shape = IGHV.status)) + geom_point(size=4) +
  xlab(sprintf("PC1 (%1.2f%%)",varExp[["PC1"]]*100)) +
  ylab(sprintf("PC2 (%1.2f%%)",varExp[["PC2"]]*100)) +
  scale_color_manual(values = colList) +
  scale_shape_manual(values = c(M = 16, U =1)) +
  xlim(-60,60) + ylim(-60,60) +
  geom_hline(yintercept = 0, linetype ="dashed", color = "grey50") +
  geom_vline(xintercept = 0, linetype ="dashed", color = "grey50") +
  theme_full + theme(legend.position = "bottom", legend.text = element_text(size =15), legend.title = element_text(size=15))

plotPCA12

ggsave("plot_PC1_PC2.pdf", height = 4, width = 5.5)

Plot PC3 and PC4

plotPCA34 <- ggplot(plotTab, aes(x=PC3, y=PC4, col = trisomy12, shape = IGHV.status)) + geom_point(size=4) +
  xlab(sprintf("PC3 (%1.2f%%)",varExp[["PC3"]]*100)) +
  ylab(sprintf("PC4 (%1.2f%%)",varExp[["PC4"]]*100)) +
  scale_color_manual(values = colList) +
  scale_shape_manual(values = c(M = 16, U =1)) +
  geom_hline(yintercept = 0, linetype ="dashed", color = "grey50") +
  geom_vline(xintercept = 0, linetype ="dashed", color = "grey50") +
  xlim(-60,60) + ylim(-60,60) +
  theme_full + theme(legend.position = "bottom", legend.text = element_text(size =15), legend.title = element_text(size=15))

plotPCA34

Plot PC1 and PC3

plotTab <- pcRes %>% data.frame() %>% cbind(colAnno[rownames(.),]) %>%
  rownames_to_column("patID") %>% as_tibble()

plotPCA13 <- ggplot(plotTab, aes(x=PC1, y=PC3, col = trisomy12, shape = IGHV.status)) + geom_point(size=4) +
  xlab(sprintf("PC1 (%1.2f%%)",varExp[["PC1"]]*100)) +
  ylab(sprintf("PC3 (%1.2f%%)",varExp[["PC3"]]*100)) +
  scale_color_manual(values = colList) +
  geom_hline(yintercept = 0, linetype ="dashed", color = "grey50") +
  geom_vline(xintercept = 0, linetype ="dashed", color = "grey50") +
  scale_shape_manual(values = c(M = 16, U =1)) +
  xlim(-60,60) + ylim(-60,60) +
  theme_full + theme(legend.position = "bottom", legend.text = element_text(size =15), legend.title = element_text(size=15))
plotPCA13

Pathway enrichment on PC1 and PC2

We will use gene set enrichment analysis to characterize the principal components (PCs) on pathway level.

PC1

enRes <- list()
gmts = list(H= "../data/gmts/h.all.v6.2.symbols.gmt",
            KEGG = "../data/gmts/c2.cp.kegg.v6.2.symbols.gmt",
            C6 = "../data/gmts/c6.all.v6.2.symbols.gmt")

proMat <- assays(protCLL.sub)[["QRILC_combat"]]
iPC <- "PC1"
pc <- pcRes[,iPC][colnames(proMat)]
designMat <- model.matrix(~1+pc)
fit <- limma::lmFit(proMat, designMat)
fit2 <- eBayes(fit)
corRes <- topTable(fit2, "pc", number = Inf) %>%
  data.frame() %>% rownames_to_column("id")

inputTab <- corRes %>% filter(adj.P.Val < 0.05) %>%
  mutate(name = rowData(protCLL[id,])$hgnc_symbol) %>% filter(!is.na(name)) %>%
  distinct(name, .keep_all = TRUE) %>%
  select(name, t) %>% data.frame() %>% column_to_rownames("name")

enRes[["Proteins associated with PC1"]] <- runGSEA(inputTab, gmts$H, "page")

PC2

proMat <- assays(protCLL.sub)[["QRILC_combat"]]
iPC <- "PC2"
pc <- pcRes[,iPC][colnames(proMat)]
designMat <- model.matrix(~1+pc)
fit <- limma::lmFit(proMat, designMat)
fit2 <- eBayes(fit)
corRes <- topTable(fit2, "pc", number = Inf) %>%
  data.frame() %>% rownames_to_column("id")

inputTab <- corRes %>% filter(adj.P.Val < 0.05) %>%
  mutate(name = rowData(protCLL[id,])$hgnc_symbol) %>% filter(!is.na(name)) %>%
  distinct(name, .keep_all = TRUE) %>%
  select(name, t) %>% data.frame() %>% column_to_rownames("name")

enRes[["Proteins associated with PC2"]] <- runGSEA(inputTab, gmts$H, "page")

PC3

proMat <- assays(protCLL.sub)[["QRILC_combat"]]
iPC <- "PC3"
pc <- pcRes[,iPC][colnames(proMat)]
designMat <- model.matrix(~1+pc)
fit <- limma::lmFit(proMat, designMat)
fit2 <- eBayes(fit)
corRes <- topTable(fit2, "pc", number = Inf) %>%
  data.frame() %>% rownames_to_column("id")

inputTab <- corRes %>% filter(adj.P.Val < 0.05) %>%
  mutate(name = rowData(protCLL[id,])$hgnc_symbol) %>% filter(!is.na(name)) %>%
  distinct(name, .keep_all = TRUE) %>%
  select(name, t) %>% data.frame() %>% column_to_rownames("name")

enRes[["Proteins associated with PC3"]] <- runGSEA(inputTab, gmts$H, "page")
cowplot::plot_grid(plotEnrichmentBar(enRes[[1]], ifFDR = TRUE, pCut = 0.05, setName = "",title = "Proteins associated with PC1", removePrefix = "HALLMARK_", setMap = setMap),
                   plotEnrichmentBar(enRes[[2]], ifFDR = TRUE, pCut = 0.05, setName = "", title = "Proteins associated with PC2", removePrefix = "HALLMARK_", setMap = setMap),
                   plotEnrichmentBar(enRes[[3]], ifFDR = TRUE, pCut = 0.05, setName = "", title = "Proteins associated with PC3", removePrefix = "HALLMARK_", setMap = setMap),
                   ncol=1,
                   align = "hv",
                   rel_heights = c(9,3,6))

Hierarchical clustering

Heatmap of expression of top 1000 most variant proteins in all samples

protCLL.sub <- protCLL[!rowData(protCLL)$chromosome_name %in% c("X","Y"),]
plotMat <- assays(protCLL.sub)[["QRILC_combat"]]
sds <- rowSds(plotMat) 
plotMat <- plotMat[order(sds, decreasing = T)[1:1000],]
colAnno <- colData(protCLL)[,c("IGHV.status","trisomy12")] %>%
  data.frame()
colAnno$trisomy12 <- ifelse(colAnno$trisomy12 %in% 1, "yes","no")

plotMat <- mscale(plotMat, center = TRUE, scale = TRUE)

annoCol <- list(trisomy12 = c(yes = "black",no = "grey80"),
                IGHV.status = c(M = colList[3], U = colList[4]))
pheatmap::pheatmap(plotMat, annotation_col = colAnno, scale = "none",
                   clustering_method = "average", clustering_distance_cols = "correlation",
                   color = colorRampPalette(c(colList[2],"white",colList[1]))(100),
                   breaks = seq(-5,5, length.out = 101), annotation_colors = annoCol, 
                   show_rownames = FALSE, show_colnames = FALSE,
                   treeheight_row = 0)

Heatmap of sample-sample correlation matrix based on protein expression

callback = function(hc, mat){
   sv = svd(t(mat))$v[,1]
   dend = reorder(as.dendrogram(hc), wts = sv)
   as.hclust(dend)
}

breaks <- c(seq(-1,-0.39, length.out=20), seq(-0.4,0.4, length.out=40), seq(0.41, 1, length.out =20))
colorList <- c(rep(colList[2],20), colorRampPalette(c(colList[2],"white",colList[1]))(40), rep(colList[1], 20))
#colList <- colorRampPalette(c(colList[2],"white",colList[1]))(100)
corMat <- cor(plotMat)
#corMat <- mscale(corMat, center=FALSE, scale=FALSE, censor = 0.5)
pheatmap(corMat, annotation_col = colAnno, clustering_method = "ward.D2", annotation_colors = annoCol,
         color =  colorList, border_color = NA,
           breaks = breaks,show_rownames = FALSE, show_colnames = FALSE,
          treeheight_col = 0, treeheight_row = 20)


sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS  10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] piano_2.4.0                 ggbeeswarm_0.6.0           
 [3] latex2exp_0.4.0             forcats_0.5.1              
 [5] stringr_1.4.0               dplyr_1.0.5                
 [7] purrr_0.3.4                 readr_1.4.0                
 [9] tidyr_1.1.3                 tibble_3.1.0               
[11] ggplot2_3.3.3               tidyverse_1.3.0            
[13] pheatmap_1.0.12             proDA_1.2.0                
[15] cowplot_1.1.1               DESeq2_1.28.1              
[17] SummarizedExperiment_1.18.2 DelayedArray_0.14.1        
[19] matrixStats_0.58.0          Biobase_2.48.0             
[21] GenomicRanges_1.40.0        GenomeInfoDb_1.24.2        
[23] IRanges_2.22.2              S4Vectors_0.26.1           
[25] BiocGenerics_0.34.0         limma_3.44.3               

loaded via a namespace (and not attached):
  [1] readxl_1.3.1           backports_1.2.1        fastmatch_1.1-0       
  [4] workflowr_1.6.2        igraph_1.2.6           shinydashboard_0.7.1  
  [7] splines_4.0.2          BiocParallel_1.22.0    crosstalk_1.1.1       
 [10] digest_0.6.27          htmltools_0.5.1.1      fansi_0.4.2           
 [13] magrittr_2.0.1         memoise_2.0.0          cluster_2.1.1         
 [16] annotate_1.66.0        modelr_0.1.8           colorspace_2.0-0      
 [19] blob_1.2.1             rvest_1.0.0            haven_2.3.1           
 [22] xfun_0.21              crayon_1.4.1           RCurl_1.98-1.2        
 [25] jsonlite_1.7.2         genefilter_1.70.0      survival_3.2-7        
 [28] glue_1.4.2             gtable_0.3.0           zlibbioc_1.34.0       
 [31] XVector_0.28.0         scales_1.1.1           DBI_1.1.1             
 [34] relations_0.6-9        Rcpp_1.0.6             viridisLite_0.3.0     
 [37] xtable_1.8-4           bit_4.0.4              DT_0.17               
 [40] htmlwidgets_1.5.3      httr_1.4.2             fgsea_1.14.0          
 [43] gplots_3.1.1           RColorBrewer_1.1-2     ellipsis_0.3.1        
 [46] pkgconfig_2.0.3        XML_3.99-0.5           farver_2.1.0          
 [49] sass_0.3.1             dbplyr_2.1.0           locfit_1.5-9.4        
 [52] utf8_1.1.4             tidyselect_1.1.0       labeling_0.4.2        
 [55] rlang_0.4.10           later_1.1.0.1          AnnotationDbi_1.50.3  
 [58] visNetwork_2.0.9       munsell_0.5.0          cellranger_1.1.0      
 [61] tools_4.0.2            cachem_1.0.4           cli_2.3.1             
 [64] generics_0.1.0         RSQLite_2.2.3          broom_0.7.5           
 [67] evaluate_0.14          fastmap_1.1.0          yaml_2.2.1            
 [70] knitr_1.31             bit64_4.0.5            fs_1.5.0              
 [73] caTools_1.18.1         nlme_3.1-152           mime_0.10             
 [76] slam_0.1-48            xml2_1.3.2             compiler_4.0.2        
 [79] rstudioapi_0.13        beeswarm_0.3.1         marray_1.66.0         
 [82] reprex_1.0.0           geneplotter_1.66.0     bslib_0.2.4           
 [85] stringi_1.5.3          highr_0.8              lattice_0.20-41       
 [88] Matrix_1.3-2           shinyjs_2.0.0          vctrs_0.3.6           
 [91] pillar_1.5.1           lifecycle_1.0.0        jquerylib_0.1.3       
 [94] data.table_1.14.0      bitops_1.0-6           httpuv_1.5.5          
 [97] R6_2.5.0               promises_1.2.0.1       KernSmooth_2.23-18    
[100] gridExtra_2.3          vipor_0.4.5            gtools_3.8.2          
[103] assertthat_0.2.1       rprojroot_2.0.2        withr_2.4.1           
[106] GenomeInfoDbData_1.2.3 mgcv_1.8-34            hms_1.0.0             
[109] grid_4.0.2             rmarkdown_2.7          git2r_0.28.0          
[112] sets_1.0-18            shiny_1.6.0            lubridate_1.7.10