Last updated: 2021-05-05

Checks: 5 2

Knit directory: CLLproteomics_publish_revision/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200227) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

The following chunks had caches available:
  • unnamed-chunk-24
  • unnamed-chunk-26
  • unnamed-chunk-27
  • unnamed-chunk-5
  • unnamed-chunk-6
  • unnamed-chunk-7
  • unnamed-chunk-8
  • unnamed-chunk-9

To ensure reproducibility of the results, delete the cache directory manuscript_S2_genomicAssociation_cache and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE when running wflow_build() or wflow_publish().

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 3fb50c5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/manuscript_S1_Overview_cache/
    Ignored:    analysis/manuscript_S2_genomicAssociation_cache/
    Ignored:    code/.DS_Store
    Ignored:    code/.Rhistory
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  analysis/.trisomy12_norm.pdf
    Untracked:  analysis/cohortComposition_all.pdf
    Untracked:  analysis/manuscript_S1_Overview.Rmd
    Untracked:  analysis/manuscript_S2_genomicAssociation.Rmd
    Untracked:  analysis/manuscript_S3_trisomy12.Rmd
    Untracked:  analysis/manuscript_S4_trisomy19.Rmd
    Untracked:  analysis/manuscript_S5_IGHV.Rmd
    Untracked:  analysis/manuscript_S6_del11q.Rmd
    Untracked:  analysis/manuscript_S7_SF3B1.Rmd
    Untracked:  analysis/manuscript_S8_drugResponse_Outcomes.Rmd
    Untracked:  analysis/manuscript_S9_STAT2.Rmd
    Untracked:  analysis/plot_PC1_PC2.pdf
    Untracked:  analysis/timsTOF_validate.Rmd
    Untracked:  code/utils.R
    Untracked:  data/Annotation file March 2021.xlsx
    Untracked:  data/CAS9results.xlsx
    Untracked:  data/CNV_onChrom.RData
    Untracked:  data/ComplexParticipantsPubMedIdentifiers_human.txt
    Untracked:  data/Fig1A.png
    Untracked:  data/IGLV321_SupplementalTables_R2.xlsx
    Untracked:  data/MOFAout.RData
    Untracked:  data/MOFAout_atLeast3.RData
    Untracked:  data/STATexprPCR.xlsx
    Untracked:  data/Western_blot_results_20210309_short.csv
    Untracked:  data/Western_blot_results_separate_blots.xlsx
    Untracked:  data/allComplexes.txt
    Untracked:  data/ddsrna_enc.RData
    Untracked:  data/exprCNV_enc.RData
    Untracked:  data/geneAnno.RData
    Untracked:  data/gmts/
    Untracked:  data/ic50.RData
    Untracked:  data/mofaIn.RData
    Untracked:  data/mofaIn_atLeast3.RData
    Untracked:  data/patMeta_enc.RData
    Untracked:  data/pepCLL_lumos_enc.RData
    Untracked:  data/protMOFA.RData
    Untracked:  data/proteins_in_complexes
    Untracked:  data/proteomic_LUMOS_2pep_enc.RData
    Untracked:  data/proteomic_explore_enc.RData
    Untracked:  data/proteomic_independent_all_enc.RData
    Untracked:  data/proteomic_independent_enc.RData
    Untracked:  data/proteomic_timsTOF_enc.RData
    Untracked:  data/screenData_enc.RData
    Untracked:  data/setToPathway.txt
    Untracked:  data/survival_enc.RData
    Untracked:  output/MSH6_splicing.svg
    Untracked:  output/SUGP1_splicing.svg
    Untracked:  output/deResList.RData
    Untracked:  output/deResListBatch2.RData
    Untracked:  output/deResListRNA.RData
    Untracked:  output/deResListRNA_allGene.RData
    Untracked:  output/deResList_WBC.RData
    Untracked:  output/deResList_batch1.RData
    Untracked:  output/deResList_batch3.RData
    Untracked:  output/deResList_independent.RData
    Untracked:  output/deResList_timsTOF.RData
    Untracked:  output/dxdCLL.RData
    Untracked:  output/dxdCLL2.RData
    Untracked:  output/exprCNV.RData
    Untracked:  output/geneAnno.RData
    Untracked:  output/int_pairs.csv
    Untracked:  output/lassoResults_CPS.RData
    Untracked:  output/resOutcome_batch1.RData
    Untracked:  output/resOutcome_batch13.RData
    Untracked:  output/resOutcome_batch2.RData
    Untracked:  output/resOutcome_batch3.RData

Unstaged changes:
    Modified:   analysis/_site.yml
    Deleted:    analysis/analysisSF3B1.Rmd
    Deleted:    analysis/comparePlatforms.Rmd
    Deleted:    analysis/compareProteomicsRNAseq.Rmd
    Deleted:    analysis/correlateCLLPD.Rmd
    Deleted:    analysis/correlateGenomic.Rmd
    Deleted:    analysis/correlateGenomic_removePC.Rmd
    Deleted:    analysis/correlateMIR.Rmd
    Deleted:    analysis/correlateMethylationCluster.Rmd
    Modified:   analysis/index.Rmd
    Deleted:    analysis/predictOutcome.Rmd
    Deleted:    analysis/processProteomics_LUMOS.Rmd
    Deleted:    analysis/processProteomics_timsTOF.Rmd
    Deleted:    analysis/qualityControl_LUMOS.Rmd
    Deleted:    analysis/qualityControl_timsTOF.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Load packages and datasets

library(limma)
library(DESeq2)
library(qvalue)
library(proDA)
library(IHW)
library(SummarizedExperiment)
library(tidyverse)

#load datasets
load("../data/patMeta_enc.RData")
load("../data/ddsrna_enc.RData")
load("../data/proteomic_explore_enc.RData")
source("../code/utils.R")
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE,dev = c("png","pdf"))
#protCLL <- protCLL[,colnames(protCLL) %in% patMeta$Patient.ID]

Preprocessing

Process proteomics data

#protCLL <- protCLL[rowData(protCLL)$uniqueMap,]
protMat <- assays(protCLL)[["count"]] #without imputation
protMatLog <- assays(protCLL)[["log2Norm"]]

Prepare genomic background

Get mutations with at least 5 cases

geneMat <-  patMeta[match(colnames(protMat), patMeta$Patient.ID),] %>%
  select(Patient.ID, IGHV.status, del11q:U1) %>%
  mutate_if(is.factor, as.character) %>% mutate(IGHV.status = ifelse(IGHV.status == "M", 1,0)) %>%
  mutate_at(vars(-Patient.ID), as.numeric) %>% #assign a few unknown mutated cases to wildtype
  data.frame() %>% column_to_rownames("Patient.ID")


geneMat <- geneMat[,apply(geneMat,2, function(x) sum(x %in% 1, na.rm = TRUE))>=5]

Mutations that will be tested

colnames(geneMat)
 [1] "IGHV.status" "del11q"      "del13q"      "del17p"      "trisomy12"  
 [6] "trisomy19"   "NOTCH1"      "ATM"         "BRAF"        "DDX3X"      
[11] "EGR2"        "MED12"       "SF3B1"       "TP53"       

Differential protein expression using proDA (LUMOS dataset)

We will use proDA, which is based on a linear model that considers the missing values using a probabilistic drop out model, to identify protein expression changes related to genotypes.
To avoid potential confounding effect of IGHV and trisomy12, which are main drivers in CLL proteomic profile, we will block for IGHV status when we are testing trisomy12 and block trisomy12 when testing for IGHV status. For other genotypes, we will block for both IGHV status and trisomy12.

Test for other variantions (blocking for IGHV and trisomy12)

Fit the probailistic dropout model and test for differentially expressed proteins

otherGenes <- colnames(geneMat)[!colnames(geneMat)%in% c("IGHV.status","trisomy12")]
resList <- lapply(otherGenes, function(n) {
  designMat <- geneMat[,c("IGHV.status","trisomy12",n)]
  designMat[,"batch"] <- factor(protCLL[,rownames(designMat)]$batch)
  designMat <- designMat[!is.na(designMat[[n]]),]
  testMat <- protMat[,rownames(designMat)]
  
  fit <- proDA(testMat, design = ~ .,
             col_data = designMat)
  
  contra <- n
  resTab <- test_diff(fit, contra) %>%
    dplyr::rename(id = name, logFC = diff, t=t_statistic,
                  P.Value = pval, adj.P.Val = adj_pval) %>% 
    mutate(name = rowData(protCLL[id,])$hgnc_symbol) %>%
    select(name, id, logFC, t, P.Value, adj.P.Val, n_obs) %>%  
    arrange(P.Value) %>% mutate(Gene = n) %>%
    as_tibble()

  #calculte log2 fold change
  lmDesign <- model.matrix(~., designMat)
  protMatTest <- protMatLog[,rownames(lmDesign)]
  lmFit <- lmFit(protMatTest, design = lmDesign)
  fit2 <- eBayes(lmFit)
  foldTab <- topTable(fit2, coef = n, number = "all") %>%
    as_tibble(rownames = "id") %>% select(id, logFC) %>%
    dplyr::rename(log2FC = logFC)
  resTab <- left_join(resTab, foldTab, by = "id")

  resTab
}) %>% bind_rows()

Combine the results

resList <- bind_rows(resList.ighvTri12, resList)

#Adjusting p values

#using BH
resList <- mutate(resList, adj.P.global = p.adjust(P.Value, method = "BH"))

#using IHW
ihwRes <- ihw(P.Value ~ factor(Gene), data= resList, alpha=0.1)
resList <- mutate(resList, adj.P.IHW = adj_pvalues(ihwRes))

Save the results for re-using

save(resList, file = "../output/deResList.RData")

Bar plot of number of significant associations with proteins (5% FDR)

Load the list of differentially expression proteins generated by Section 2

load("../output/deResList.RData")
plotTab <- resList %>% group_by(Gene) %>%
  summarise(nFDR.local = sum(adj.P.Val <= 0.05))

Individual gene adjusted

plotTab <- arrange(plotTab, desc(nFDR.local)) %>% mutate(Gene = factor(Gene, levels = Gene))
numCorBar <- ggplot(plotTab, aes(x=Gene, y = nFDR.local)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = nFDR.local),vjust=-1,col="black",size=5) + ylim(0,1200) +
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(5% FDR)") + xlab("")

numCorBar

Some examples of protein-gene associations that passed 0.01 p-value but not 5% FDR

protTab <- sumToTidy(protCLL, rowID = "uniprotID", colID = "patID") %>%
  mutate(count = count_combat)

Del13q

resListSub <- filter(resList, Gene == "del13q")
nameList <- c("CD22","CD72")

plotTab <- protTab %>% filter(hgnc_symbol %in% nameList) %>%
  mutate(del13q = patMeta[match(patID, patMeta$Patient.ID),]$del13q) %>%
  mutate(status = ifelse(del13q %in% 1,"del(13)(q14)","other"),
         name = hgnc_symbol) %>%
  mutate(status = factor(status, levels = c("other","del(13)(q14)")))
pList <- plotBox(plotTab, pValTabel = resListSub, y_lab = "Protein expression")
del13qBox <- cowplot::plot_grid(plotlist= pList, ncol=2)
del13qBox

TP53

resListSub <- filter(resList, Gene == "TP53")
nameList <- c("BCAS2")


plotTab <- protTab %>% filter(hgnc_symbol %in% nameList) %>%
  mutate(TP53 = patMeta[match(patID, patMeta$Patient.ID),]$TP53) %>%
  mutate(status = ifelse(TP53 %in% 1,"Mut","WT"),
         name = hgnc_symbol) %>%
  mutate(status = factor(status, levels = c("WT","Mut")))
pList <- plotBox(plotTab, pValTabel = resListSub, y_lab = "Protein expression")
tp53Box <- cowplot::plot_grid(plotlist= pList, ncol=1)
tp53Box

Association test in timsTOF data

The same procedure as for the LUMOS dataset will be used.

For IGHV and trisomy12

Load timsTOF data

load("../data/proteomic_timsTOF_enc.RData")
protMat <- assays(protCLL)[["count"]] #without imputation

Genetic data

geneMat <-  patMeta[match(colnames(protMat), patMeta$Patient.ID),] %>%
  select(Patient.ID, IGHV.status, trisomy12, SF3B1, trisomy19, del11q, del13q) %>%
  mutate_if(is.factor, as.character) %>% mutate(IGHV.status = ifelse(IGHV.status == "M", 1,0)) %>%
  mutate_at(vars(-Patient.ID), as.numeric) %>% #assign a few unknown mutated cases to wildtype
  data.frame() %>% column_to_rownames("Patient.ID")

Fit the probailistic dropout model

designMat <- geneMat[  ,c("IGHV.status","trisomy12")]
fit <- proDA(protMat, design = ~ .,
             col_data = designMat)

Test for differentially expressed proteins

resList.ighvTri12 <- lapply(c("IGHV.status","trisomy12"), function(n) {
  contra <- n
  resTab <- test_diff(fit, contra) %>%
    dplyr::rename(id = name, logFC = diff, t=t_statistic,
                  P.Value = pval, adj.P.Val = adj_pval) %>% 
    mutate(name = rowData(protCLL[id,])$hgnc_symbol) %>%
    select(name, id, logFC, t, P.Value, adj.P.Val) %>%  
    arrange(P.Value) %>% mutate(Gene = n) %>%
    as_tibble()
}) %>% bind_rows()

Test for other variantions (blocking for IGHV and trisomy12)

Fit the probailistic dropout model and test for differentially expressed proteins

otherGenes <- colnames(geneMat)[!colnames(geneMat)%in% c("IGHV.status","trisomy12")]
resList <- lapply(otherGenes, function(n) {
  designMat <- geneMat[,c("IGHV.status","trisomy12",n)]
  designMat <- designMat[!is.na(designMat[[n]]),]
  testMat <- protMat[,rownames(designMat)]
  
  fit <- proDA(testMat, design = ~ .,
             col_data = designMat)
  
  contra <- n
  resTab <- test_diff(fit, contra) %>%
    dplyr::rename(id = name, logFC = diff, t=t_statistic,
                  P.Value = pval, adj.P.Val = adj_pval) %>% 
    mutate(name = rowData(protCLL[id,])$hgnc_symbol) %>%
    select(name, id, logFC, t, P.Value, adj.P.Val) %>%  
    arrange(P.Value) %>% mutate(Gene = n) %>%
    as_tibble()
  resTab
}) %>% bind_rows()

Combine the results

resList <- bind_rows(resList.ighvTri12, resList)

#Adjusting p values

#using BH
resList <- mutate(resList, adj.P.global = p.adjust(P.Value, method = "BH"))

#using IHW
ihwRes <- ihw(P.Value ~ factor(Gene), data= resList, alpha=0.1)
resList <- mutate(resList, adj.P.IHW = adj_pvalues(ihwRes))
save(resList, file = "../output/deResList_timsTOF.RData")

Bar plot of number of significant associations with proteins (5% FDR)

Load the list of differentially expression proteins generated by Section 2

load("../output/deResList_timsTOF.RData")
plotTab <- resList %>% group_by(Gene) %>%
  summarise(nFDR.local = sum(adj.P.Val <= 0.05))
plotTab <- arrange(plotTab, desc(nFDR.local)) %>% mutate(Gene = factor(Gene, levels = Gene))
numCorBar <- ggplot(plotTab, aes(x=Gene, y = nFDR.local)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = nFDR.local),vjust=-1,col="black",size=5) + ylim(0,1000) +
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(5% FDR)") + xlab("")

numCorBar

Identify assocations between RNA expression and genotypes

DEseq2 will be used to identify RNA expression changes related to genotypes. The same blocking strategy as used for the proteomic data will also be used for RNAseq data.

Prepare RNA seq data

Subset for samples with proteomics

ddsSub <- dds[,dds$PatID %in% colnames(protCLL)]
#how many samples?

ddsSub <- ddsSub[rownames(ddsSub) %in% rowData(protCLL)$ensembl_gene_id,]

#how many genes without any RNA expression detected?
#table(rowSums(counts(ddsSub)) > 0)

ddsSub <- ddsSub[rowSums(counts(ddsSub)) > 0, ]
colData(ddsSub) <- cbind(colData(ddsSub), geneMat[colnames(ddsSub),])

Test For IGHV and trisomy12

design(ddsSub) <- ~ IGHV.status + trisomy12
deRes <- DESeq(ddsSub)

Test for differentially expressed proteins

resList.ighvTri12 <- lapply(c("IGHV.status","trisomy12"), function(n) {
  resTab <- results(deRes, name = n, tidy = TRUE) %>%
    dplyr::rename(id = row, log2FC = log2FoldChange, t=stat,
                  P.Value = pvalue, adj.P.Val = padj) %>% 
    mutate(name = rowData(ddsSub[id,])$symbol) %>%
    select(name, id, log2FC, t, P.Value, adj.P.Val) %>%  
    arrange(P.Value) %>% mutate(Gene = n) %>%
    as_tibble()
}) %>% bind_rows()

Test for other variantions (blocking for IGHV and trisomy12)

otherGenes <- colnames(geneMat)[!colnames(geneMat)%in% c("IGHV.status","trisomy12")]
resList <- lapply(otherGenes, function(n) {
  
  ddsTest <- ddsSub[,!is.na(ddsSub[[n]])]
  design(ddsTest) <- as.formula(paste0("~ IGHV.status + trisomy12 + ",n))
  deRes <- DESeq(ddsTest, betaPrior = FALSE)

  resTab <- results(deRes, name = n, tidy = TRUE) %>%
    dplyr::rename(id = row, log2FC = log2FoldChange, t=stat,
                  P.Value = pvalue, adj.P.Val = padj) %>% 
    mutate(name = rowData(ddsSub[id,])$symbol) %>%
    select(name, id, log2FC, t, P.Value, adj.P.Val) %>%  
    arrange(P.Value) %>% mutate(Gene = n) %>%
    as_tibble()
  
  resTab
}) %>% bind_rows()

Combine the results

resListRNA <- bind_rows(resList.ighvTri12, resList)

Save the results for re-using

save(resListRNA, file = "../output/deResListRNA.RData")

Load the pre-calculated results (differential expression tests take long time.)

load("../output/deResListRNA.RData")

Bar plot of number of significant associations (5% FDR)

fdrCut = 0.05
plotTab <- resListRNA %>% group_by(Gene) %>%
  summarise(nFDR.local = sum(adj.P.Val <= fdrCut, na.rm=TRUE),
            nP = sum(P.Value < 0.05))

P values adjusted for each variant

#local adjusted P-values

plotTab <- arrange(plotTab, desc(nFDR.local)) %>% mutate(Gene = factor(Gene, levels = Gene))
ggplot(plotTab, aes(x=Gene, y = nFDR.local)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = paste0(nFDR.local)),vjust=-1,col="black") + 
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(5% FDR)") + xlab("")


sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS  10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] ggbeeswarm_0.6.0            latex2exp_0.4.0            
 [3] forcats_0.5.1               stringr_1.4.0              
 [5] dplyr_1.0.5                 purrr_0.3.4                
 [7] readr_1.4.0                 tidyr_1.1.3                
 [9] tibble_3.1.0                ggplot2_3.3.3              
[11] tidyverse_1.3.0             IHW_1.16.0                 
[13] proDA_1.2.0                 qvalue_2.20.0              
[15] DESeq2_1.28.1               SummarizedExperiment_1.18.2
[17] DelayedArray_0.14.1         matrixStats_0.58.0         
[19] Biobase_2.48.0              GenomicRanges_1.40.0       
[21] GenomeInfoDb_1.24.2         IRanges_2.22.2             
[23] S4Vectors_0.26.1            BiocGenerics_0.34.0        
[25] limma_3.44.3               

loaded via a namespace (and not attached):
 [1] colorspace_2.0-0       ellipsis_0.3.1         rprojroot_2.0.2       
 [4] XVector_0.28.0         fs_1.5.0               rstudioapi_0.13       
 [7] farver_2.1.0           bit64_4.0.5            AnnotationDbi_1.50.3  
[10] fansi_0.4.2            lubridate_1.7.10       xml2_1.3.2            
[13] codetools_0.2-18       splines_4.0.2          cachem_1.0.4          
[16] geneplotter_1.66.0     knitr_1.31             jsonlite_1.7.2        
[19] workflowr_1.6.2        broom_0.7.5            annotate_1.66.0       
[22] dbplyr_2.1.0           compiler_4.0.2         httr_1.4.2            
[25] backports_1.2.1        assertthat_0.2.1       Matrix_1.3-2          
[28] fastmap_1.1.0          cli_2.3.1              later_1.1.0.1         
[31] htmltools_0.5.1.1      tools_4.0.2            gtable_0.3.0          
[34] glue_1.4.2             GenomeInfoDbData_1.2.3 reshape2_1.4.4        
[37] Rcpp_1.0.6             slam_0.1-48            cellranger_1.1.0      
[40] jquerylib_0.1.3        vctrs_0.3.6            xfun_0.21             
[43] rvest_1.0.0            lifecycle_1.0.0        XML_3.99-0.5          
[46] zlibbioc_1.34.0        scales_1.1.1           hms_1.0.0             
[49] promises_1.2.0.1       RColorBrewer_1.1-2     yaml_2.2.1            
[52] memoise_2.0.0          sass_0.3.1             stringi_1.5.3         
[55] RSQLite_2.2.3          highr_0.8              genefilter_1.70.0     
[58] BiocParallel_1.22.0    rlang_0.4.10           pkgconfig_2.0.3       
[61] bitops_1.0-6           evaluate_0.14          lattice_0.20-41       
[64] lpsymphony_1.16.0      labeling_0.4.2         cowplot_1.1.1         
[67] bit_4.0.4              tidyselect_1.1.0       plyr_1.8.6            
[70] magrittr_2.0.1         R6_2.5.0               generics_0.1.0        
[73] DBI_1.1.1              pillar_1.5.1           haven_2.3.1           
[76] withr_2.4.1            survival_3.2-7         RCurl_1.98-1.2        
[79] modelr_0.1.8           crayon_1.4.1           fdrtool_1.2.16        
[82] utf8_1.1.4             rmarkdown_2.7          locfit_1.5-9.4        
[85] grid_4.0.2             readxl_1.3.1           blob_1.2.1            
[88] git2r_0.28.0           reprex_1.0.0           digest_0.6.27         
[91] xtable_1.8-4           extraDistr_1.9.1       httpuv_1.5.5          
[94] munsell_0.5.0          beeswarm_0.3.1         vipor_0.4.5           
[97] bslib_0.2.4