Last updated: 2021-03-15

Checks: 6 1

Knit directory: CLLproteomics_batch13/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200227) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 3fb50c5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/manuscript_S1_Overview_cache/
    Ignored:    analysis/manuscript_S3_trisomy12_cache/
    Ignored:    analysis/manuscript_S8_drugResponse_Outcomes_cache/
    Ignored:    analysis/manuscript_S9_STAT2_cache/
    Ignored:    code/.DS_Store
    Ignored:    code/.Rhistory
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  analysis/.trisomy12_norm.pdf
    Untracked:  analysis/STAT2splicing.Rmd
    Untracked:  analysis/analysisBatch2.Rmd
    Untracked:  analysis/bufferAnalysis.Rmd
    Untracked:  analysis/cohortComposition.pdf
    Untracked:  analysis/cohortComposition_batch2.pdf
    Untracked:  analysis/compareBatchClinics.Rmd
    Untracked:  analysis/compareBatchGenomics.Rmd
    Untracked:  analysis/compareTreatment.Rmd
    Untracked:  analysis/complexAnalysis_overall.Rmd
    Untracked:  analysis/corumPairs.csv
    Untracked:  analysis/manuscript_S1_Overview.Rmd
    Untracked:  analysis/manuscript_S2_genomicAssociation.Rmd
    Untracked:  analysis/manuscript_S3_trisomy12.Rmd
    Untracked:  analysis/manuscript_S4_trisomy19.Rmd
    Untracked:  analysis/manuscript_S5_IGHV.Rmd
    Untracked:  analysis/manuscript_S6_del11q.Rmd
    Untracked:  analysis/manuscript_S7_SF3B1.Rmd
    Untracked:  analysis/manuscript_S8_drugResponse_Outcomes.Rmd
    Untracked:  analysis/manuscript_S9_STAT2.Rmd
    Untracked:  analysis/patInfoTab.csv
    Untracked:  analysis/patInfoTab.tex
    Untracked:  analysis/protRNACor_eachPat.pdf
    Untracked:  analysis/test.pdf
    Untracked:  code/utils.R
    Untracked:  data/CNV_onChrom.RData
    Untracked:  data/ComplexParticipantsPubMedIdentifiers_human.txt
    Untracked:  data/Fig1A.png
    Untracked:  data/Western_blot_results_20210309_short.csv
    Untracked:  data/allComplexes.txt
    Untracked:  data/ddsrna_enc.RData
    Untracked:  data/exprCNV_enc.RData
    Untracked:  data/geneAnno.RData
    Untracked:  data/gmts/
    Untracked:  data/ic50.RData
    Untracked:  data/patMeta_enc.RData
    Untracked:  data/pepCLL_lumos_enc.RData
    Untracked:  data/proteins_in_complexes
    Untracked:  data/proteomic_explore_enc.RData
    Untracked:  data/proteomic_independent_enc.RData
    Untracked:  data/proteomic_timsTOF_enc.RData
    Untracked:  data/screenData_enc.RData
    Untracked:  data/survival_enc.RData
    Untracked:  output/MSH6_splicing.svg
    Untracked:  output/SUGP1_splicing.svg
    Untracked:  output/deResList.RData
    Untracked:  output/deResListBatch2.RData
    Untracked:  output/deResListRNA.RData
    Untracked:  output/deResList_WBC.RData
    Untracked:  output/deResList_batch1.RData
    Untracked:  output/deResList_batch3.RData
    Untracked:  output/deResList_timsTOF.RData
    Untracked:  output/dxdCLL.RData
    Untracked:  output/dxdCLL2.RData
    Untracked:  output/exprCNV.RData
    Untracked:  output/geneAnno.RData
    Untracked:  output/int_pairs.csv
    Untracked:  output/resOutcome_batch1.RData
    Untracked:  output/resOutcome_batch13.RData
    Untracked:  output/resOutcome_batch2.RData
    Untracked:  output/resOutcome_batch3.RData

Unstaged changes:
    Modified:   analysis/_site.yml
    Deleted:    analysis/analysisSF3B1.Rmd
    Deleted:    analysis/comparePlatforms.Rmd
    Deleted:    analysis/compareProteomicsRNAseq.Rmd
    Deleted:    analysis/correlateCLLPD.Rmd
    Deleted:    analysis/correlateGenomic.Rmd
    Deleted:    analysis/correlateGenomic_removePC.Rmd
    Deleted:    analysis/correlateMIR.Rmd
    Deleted:    analysis/correlateMethylationCluster.Rmd
    Modified:   analysis/index.Rmd
    Deleted:    analysis/predictOutcome.Rmd
    Deleted:    analysis/processProteomics_LUMOS.Rmd
    Deleted:    analysis/processProteomics_timsTOF.Rmd
    Deleted:    analysis/qualityControl_LUMOS.Rmd
    Deleted:    analysis/qualityControl_timsTOF.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Load packages and datasets

library(limma)
library(DESeq2)
library(proDA)
library(IHW)
library(SummarizedExperiment)
library(tidyverse)

#load datasets
load("../data/patMeta_enc.RData")
load("../data/ddsrna_enc.RData")
load("../data/proteomic_explore_enc.RData")
source("../code/utils.R")
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE,dev = c("png","pdf"))
#protCLL <- protCLL[,colnames(protCLL) %in% patMeta$Patient.ID]

Preprocessing

Process proteomics data

#protCLL <- protCLL[rowData(protCLL)$uniqueMap,]
protMat <- assays(protCLL)[["count"]] #without imputation
protMatLog <- assays(protCLL)[["log2Norm"]]

Prepare genomic background

Get mutations with at least 5 cases

geneMat <-  patMeta[match(colnames(protMat), patMeta$Patient.ID),] %>%
  select(Patient.ID, IGHV.status, del11q:U1) %>%
  mutate_if(is.factor, as.character) %>% mutate(IGHV.status = ifelse(IGHV.status == "M", 1,0)) %>%
  mutate_at(vars(-Patient.ID), as.numeric) %>% #assign a few unknown mutated cases to wildtype
  data.frame() %>% column_to_rownames("Patient.ID")


geneMat <- geneMat[,apply(geneMat,2, function(x) sum(x %in% 1, na.rm = TRUE))>=5]

Mutations that will be tested

colnames(geneMat)
 [1] "IGHV.status" "del11q"      "del13q"      "del17p"      "trisomy12"  
 [6] "trisomy19"   "ATM"         "BRAF"        "DDX3X"       "EGR2"       
[11] "MED12"       "NOTCH1"      "SF3B1"       "TP53"       

Differential protein expression using proDA

For IGHV and trisomy12

Fit the probailistic dropout model

designMat <- geneMat[  ,c("IGHV.status","trisomy12")]
designMat[,"batch"] <- factor(protCLL[,rownames(designMat)]$batch)
fit <- proDA(protMat, design = ~ . ,
             col_data = designMat)

Limma for calculating log2 fold change

lmDesign <- model.matrix(~., designMat)
lmFit <- lmFit(protMatLog, design = lmDesign)
fit2 <- eBayes(lmFit)

Test for differentially expressed proteins

resList.ighvTri12 <- lapply(c("IGHV.status","trisomy12"), function(n) {
  contra <- n
  resTab <- test_diff(fit, contra) %>%
    dplyr::rename(id = name, logFC = diff, t=t_statistic,
                  P.Value = pval, adj.P.Val = adj_pval) %>% 
    mutate(name = rowData(protCLL[id,])$hgnc_symbol) %>%
    select(name, id, logFC, t, P.Value, adj.P.Val, n_obs) %>%  
    arrange(P.Value) %>% mutate(Gene = n) %>%
    as_tibble()
  
  foldTab <- topTable(fit2, coef = n, number = "all") %>%
    as_tibble(rownames = "id") %>% select(id, logFC) %>%
    dplyr::rename(log2FC = logFC)
  
  resTab <- left_join(resTab, foldTab, by = "id")
  resTab
  
}) %>% bind_rows()

Test for other variantions (blocking for IGHV and trisomy12)

Fit the probailistic dropout model and test for differentially expressed proteins

otherGenes <- colnames(geneMat)[!colnames(geneMat)%in% c("IGHV.status","trisomy12")]
resList <- lapply(otherGenes, function(n) {
  designMat <- geneMat[,c("IGHV.status","trisomy12",n)]
  designMat[,"batch"] <- factor(protCLL[,rownames(designMat)]$batch)
  designMat <- designMat[!is.na(designMat[[n]]),]
  testMat <- protMat[,rownames(designMat)]
  
  fit <- proDA(testMat, design = ~ .,
             col_data = designMat)
  
  contra <- n
  resTab <- test_diff(fit, contra) %>%
    dplyr::rename(id = name, logFC = diff, t=t_statistic,
                  P.Value = pval, adj.P.Val = adj_pval) %>% 
    mutate(name = rowData(protCLL[id,])$hgnc_symbol) %>%
    select(name, id, logFC, t, P.Value, adj.P.Val, n_obs) %>%  
    arrange(P.Value) %>% mutate(Gene = n) %>%
    as_tibble()

  #calculte log2 fold change
  lmDesign <- model.matrix(~., designMat)
  protMatTest <- protMatLog[,rownames(lmDesign)]
  lmFit <- lmFit(protMatTest, design = lmDesign)
  fit2 <- eBayes(lmFit)
  foldTab <- topTable(fit2, coef = n, number = "all") %>%
    as_tibble(rownames = "id") %>% select(id, logFC) %>%
    dplyr::rename(log2FC = logFC)
  resTab <- left_join(resTab, foldTab, by = "id")

  resTab
}) %>% bind_rows()

Combine the results

resList <- bind_rows(resList.ighvTri12, resList)

#Adjusting p values

#using BH
resList <- mutate(resList, adj.P.global = p.adjust(P.Value, method = "BH"))

#using IHW
ihwRes <- ihw(P.Value ~ factor(Gene), data= resList, alpha=0.1)
resList <- mutate(resList, adj.P.IHW = adj_pvalues(ihwRes))

Calculate Q value for all tests

qobj <- qvalue(resList$P.Value)
resList$Q.Value.global <- qobj$qvalues

Calcualte Q values for test in individual genes

resListNew <- lapply(unique(resList$Gene), function(gn) {
  eachTab <- filter(resList, Gene == gn)
  qobj <- qvalue(eachTab$P.Value)
  eachTab$Q.Value.local <- qobj$qvalues
  eachTab
}) %>% bind_rows()
resList <- resListNew

Save the results for re-using

save(resList, file = "../output/deResList.RData")

Load the pre-calculated results (differential expression tests take long time.)

load("../output/deResList.RData")

Summarise significant associations

Bar plot of number of significant associations (10% FDR)

fdrCut = 0.1
plotTab <- resList %>% group_by(Gene) %>%
  summarise(nFDR.local = sum(adj.P.Val <= fdrCut),
            nFDR.global = sum(adj.P.global <= fdrCut),
            nFDR.IHW = sum(adj.P.IHW <= fdrCut),
            nFDR.Q.global = sum(Q.Value.global <=fdrCut),
            nFDR.Q.local = sum(Q.Value.local < fdrCut),
            nP = sum(P.Value < 0.05))

P values adjusted for each variant

#local adjusted P-values

plotTab <- arrange(plotTab, desc(nFDR.local)) %>% mutate(Gene = factor(Gene, levels = Gene))
ggplot(plotTab, aes(x=Gene, y = nFDR.local)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = paste0("n=", nFDR.local)),vjust=-1,col=colList[1]) + 
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(10% FDR)") + xlab("")

P-values adjusted for all tests together

#Global adjusted P-values

plotTab <- arrange(plotTab, desc(nFDR.global)) %>% mutate(Gene = factor(Gene, levels = Gene))
ggplot(plotTab, aes(x=Gene, y = nFDR.global)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = paste0("n=", nFDR.global)),vjust=-1,col=colList[1]) + 
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(10% FDR)") + xlab("")

Q values for all test

#IHW adjusted p-values
plotTab <- arrange(plotTab, desc(nFDR.Q.global)) %>% mutate(Gene = factor(Gene, levels = Gene))
ggplot(plotTab, aes(x=Gene, y = nFDR.Q.global)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = paste0("n=", nFDR.Q.global)),vjust=-1,col=colList[1]) + 
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(10% FDR)") + xlab("")

Q values for individual genes

#IHW adjusted p-values
plotTab <- arrange(plotTab, desc(nFDR.Q.local)) %>% mutate(Gene = factor(Gene, levels = Gene))
ggplot(plotTab, aes(x=Gene, y = nFDR.Q.local)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = paste0("n=", nFDR.Q.local)),vjust=-1,col=colList[1]) + 
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(10% FDR)") + xlab("")

IHW adjusted p-values

#IHW adjusted p-values
plotTab <- arrange(plotTab, desc(nFDR.IHW)) %>% mutate(Gene = factor(Gene, levels = Gene))
ggplot(plotTab, aes(x=Gene, y = nFDR.IHW)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = paste0("n=", nFDR.IHW)),vjust=-1,col=colList[1]) + 
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(10% FDR)") + xlab("")

Bar plot of number of significant associations (5% FDR)

fdrCut = 0.05
plotTab <- resList %>% group_by(Gene) %>%
  summarise(nFDR.local = sum(adj.P.Val <= fdrCut),
            nFDR.global = sum(adj.P.global <= fdrCut),
            nFDR.IHW = sum(adj.P.IHW <= fdrCut),
            nFDR.Q.global = sum(Q.Value.global <=fdrCut),
            nFDR.Q.local = sum(Q.Value.local < fdrCut),
            nP = sum(P.Value < 0.05))

P values adjusted for each variant

#local adjusted P-values

plotTab <- arrange(plotTab, desc(nFDR.local)) %>% mutate(Gene = factor(Gene, levels = Gene))
ggplot(plotTab, aes(x=Gene, y = nFDR.local)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = paste0("n=", nFDR.local)),vjust=-1,col=colList[1]) + 
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(5% FDR)") + xlab("")

P-values adjusted for all tests together

#Global adjusted P-values

plotTab <- arrange(plotTab, desc(nFDR.global)) %>% mutate(Gene = factor(Gene, levels = Gene))
ggplot(plotTab, aes(x=Gene, y = nFDR.global)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = paste0("n=", nFDR.global)),vjust=-1,col=colList[1]) +
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(5% FDR)") + xlab("")

Q values for all test

#IHW adjusted p-values
plotTab <- arrange(plotTab, desc(nFDR.Q.global)) %>% mutate(Gene = factor(Gene, levels = Gene))
ggplot(plotTab, aes(x=Gene, y = nFDR.Q.global)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = paste0("n=", nFDR.Q.global)),vjust=-1,col=colList[1]) + 
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(5% FDR)") + xlab("")

Q values for individual genes

#IHW adjusted p-values
plotTab <- arrange(plotTab, desc(nFDR.Q.local)) %>% mutate(Gene = factor(Gene, levels = Gene))
ggplot(plotTab, aes(x=Gene, y = nFDR.Q.local)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = paste0("n=", nFDR.Q.local)),vjust=-1,col=colList[1]) + 
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(5% FDR)") + xlab("")

IHW adjusted p-values

#IHW adjusted p-values
plotTab <- arrange(plotTab, desc(nFDR.IHW)) %>% mutate(Gene = factor(Gene, levels = Gene))
ggplot(plotTab, aes(x=Gene, y = nFDR.IHW)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = paste0("n=", nFDR.IHW)),vjust=-1,col=colList[1]) + 
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(5% FDR)") + xlab("")

Bar plot of number of raw P-value < 0.05

plotTab <- arrange(plotTab, desc(nP)) %>% mutate(Gene = factor(Gene, levels = Gene))
ggplot(plotTab, aes(x=Gene, y = nP)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = paste0("n=", nP)),vjust=-1,col=colList[1]) + ylim(0,1500) +
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(nominal P-value < 0.05)") + xlab("")

Stratified P-value histogram

ggplot(resList, aes(x=P.Value)) + geom_histogram() +
  facet_wrap(~Gene)

Differential protein expression using proDA (include WBC count as covariate)

For IGHV and trisomy12

Fit the probailistic dropout model

designMat <- geneMat[  ,c("IGHV.status","trisomy12")]
designMat[,"batch"] <- factor(protCLL[,rownames(designMat)]$batch)
designMat[,"LeukCount"] <- log10(sampleTab[match(rownames(designMat), sampleTab$encID),]$leukCount)
fit <- proDA(protMat, design = ~ . ,
             col_data = designMat)

Limma for calculating log2 fold change

lmDesign <- model.matrix(~., designMat)
lmFit <- lmFit(protMatLog, design = lmDesign)
fit2 <- eBayes(lmFit)

Test for differentially expressed proteins

resList.ighvTri12 <- lapply(c("IGHV.status","trisomy12"), function(n) {
  contra <- n
  resTab <- test_diff(fit, contra) %>%
    dplyr::rename(id = name, logFC = diff, t=t_statistic,
                  P.Value = pval, adj.P.Val = adj_pval) %>% 
    mutate(name = rowData(protCLL[id,])$hgnc_symbol) %>%
    select(name, id, logFC, t, P.Value, adj.P.Val, n_obs) %>%  
    arrange(P.Value) %>% mutate(Gene = n) %>%
    as_tibble()
  
  foldTab <- topTable(fit2, coef = n, number = "all") %>%
    as_tibble(rownames = "id") %>% select(id, logFC) %>%
    dplyr::rename(log2FC = logFC)
  
  resTab <- left_join(resTab, foldTab, by = "id")
  resTab
  
}) %>% bind_rows()

Test for other variantions (blocking for IGHV and trisomy12)

Fit the probailistic dropout model and test for differentially expressed proteins

otherGenes <- colnames(geneMat)[!colnames(geneMat)%in% c("IGHV.status","trisomy12")]
resList <- lapply(otherGenes, function(n) {
  designMat <- geneMat[,c("IGHV.status","trisomy12",n)]
  designMat[,"batch"] <- factor(protCLL[,rownames(designMat)]$batch)
  designMat[,"LeukCount"] <- log10(sampleTab[match(rownames(designMat), sampleTab$encID),]$leukCount)
  designMat <- designMat[!is.na(designMat[[n]]),]
  testMat <- protMat[,rownames(designMat)]
  
  fit <- proDA(testMat, design = ~ .,
             col_data = designMat)
  
  contra <- n
  resTab <- test_diff(fit, contra) %>%
    dplyr::rename(id = name, logFC = diff, t=t_statistic,
                  P.Value = pval, adj.P.Val = adj_pval) %>% 
    mutate(name = rowData(protCLL[id,])$hgnc_symbol) %>%
    select(name, id, logFC, t, P.Value, adj.P.Val, n_obs) %>%  
    arrange(P.Value) %>% mutate(Gene = n) %>%
    as_tibble()

  #calculte log2 fold change
  lmDesign <- model.matrix(~., designMat)
  protMatTest <- protMatLog[,rownames(lmDesign)]
  lmFit <- lmFit(protMatTest, design = lmDesign)
  fit2 <- eBayes(lmFit)
  foldTab <- topTable(fit2, coef = n, number = "all") %>%
    as_tibble(rownames = "id") %>% select(id, logFC) %>%
    dplyr::rename(log2FC = logFC)
  resTab <- left_join(resTab, foldTab, by = "id")

  resTab
}) %>% bind_rows()

Combine the results

resList_WBC <- bind_rows(resList.ighvTri12, resList)

Save the results for re-using

save(resList_WBC, file = "../output/deResList_WBC.RData")

Load the pre-calculated results (differential expression tests take long time.)

load("../output/deResList_WBC.RData")
load("../output/deResList.RData")

Compare results with and without blocking for WBC

tabNoBlock <- resList %>% mutate(ifSig = adj.P.Val <= 0.05) %>%
  select(id, Gene, P.Value, ifSig)
tabBlock <- resList_WBC %>% mutate(ifSig.block = adj.P.Val < 0.05, P.Value.block = P.Value) %>%
  select(id, Gene, P.Value.block, ifSig.block)
compareTab <- left_join(tabNoBlock, tabBlock, by = c("id","Gene")) %>%
  mutate(group = case_when(
    ifSig & ifSig.block ~ "significant in both",
    ifSig & !ifSig.block ~ "significant only without blocking",
    !ifSig & ifSig.block ~ "significant only with blocking",
    TRUE ~ "not significant in both"
  ))

ggplot(compareTab, aes(x=-log10(P.Value), y=-log10(P.Value.block), col = group)) + 
  geom_point(alpha=0.5) +
  xlab("-log10(P value) without blocking") + ylab("-log10 (P value) with blocking for WBC counts") +
  scale_color_manual(values = c("grey80", colList[2], colList[1], colList[3]), name = "") +
  geom_abline(slope = 1, linetype ="dashed") +
  ggtitle("Associations with genomics") +
  theme_full +
  theme(legend.position = c(0.7,0.2))

Number of associations in each catagory

tt <- table(compareTab$group)
tt

          not significant in both               significant in both 
                            49616                              3106 
   significant only with blocking significant only without blocking 
                               58                               244 

A percentage of consistent results

(tt[1] + tt[2])/sum(tt)*100
not significant in both 
               99.43045 

Associated the RNA expression with genomics using the same method

Prepare RNA seq data

Subset for samples with proteomics

ddsSub <- dds[,dds$PatID %in% colnames(protCLL)]
#how many samples?

ncol(ddsSub)
[1] 82

Subset for genes detected at protein level

ddsSub <- ddsSub[rownames(ddsSub) %in% rowData(protCLL)$ensembl_gene_id,]

#how many genes without any RNA expression detected?
table(rowSums(counts(ddsSub)) > 0)

FALSE  TRUE 
   12  3291 
ddsSub <- ddsSub[rowSums(counts(ddsSub)) > 0, ]

12 genes were not detected at RNA level, they are removed from anaysis

How many gene and samples left?

dim(ddsSub)
[1] 3291   82

Differential RNA expression using DESeq

colData(ddsSub) <- cbind(colData(ddsSub), geneMat[colnames(ddsSub),])

For IGHV and trisomy12

design(ddsSub) <- ~ IGHV.status + trisomy12
deRes <- DESeq(ddsSub)

Test for differentially expressed proteins

resList.ighvTri12 <- lapply(c("IGHV.status","trisomy12"), function(n) {
  resTab <- results(deRes, name = n, tidy = TRUE) %>%
    dplyr::rename(id = row, log2FC = log2FoldChange, t=stat,
                  P.Value = pvalue, adj.P.Val = padj) %>% 
    mutate(name = rowData(ddsSub[id,])$symbol) %>%
    select(name, id, log2FC, t, P.Value, adj.P.Val) %>%  
    arrange(P.Value) %>% mutate(Gene = n) %>%
    as_tibble()
}) %>% bind_rows()

Test for other variantions (blocking for IGHV and trisomy12)

otherGenes <- colnames(geneMat)[!colnames(geneMat)%in% c("IGHV.status","trisomy12")]
resList <- lapply(otherGenes, function(n) {
  
  ddsTest <- ddsSub[,!is.na(ddsSub[[n]])]
  design(ddsTest) <- as.formula(paste0("~ IGHV.status + trisomy12 + ",n))
  deRes <- DESeq(ddsTest)

  resTab <- results(deRes, name = n, tidy = TRUE) %>%
    dplyr::rename(id = row, log2FC = log2FoldChange, t=stat,
                  P.Value = pvalue, adj.P.Val = padj) %>% 
    mutate(name = rowData(ddsSub[id,])$symbol) %>%
    select(name, id, log2FC, t, P.Value, adj.P.Val) %>%  
    arrange(P.Value) %>% mutate(Gene = n) %>%
    as_tibble()
  
  resTab
}) %>% bind_rows()

Combine the results

resListRNA <- bind_rows(resList.ighvTri12, resList)

Save the results for re-using

save(resListRNA, file = "../output/deResListRNA.RData")

Load the pre-calculated results (differential expression tests take long time.)

load("../output/deResListRNA.RData")

Bar plot of number of significant associations (5% FDR)

fdrCut = 0.05
plotTab <- resListRNA %>% group_by(Gene) %>%
  summarise(nFDR.local = sum(adj.P.Val <= fdrCut, na.rm=TRUE),
            nP = sum(P.Value < 0.05))

P values adjusted for each variant

#local adjusted P-values

plotTab <- arrange(plotTab, desc(nFDR.local)) %>% mutate(Gene = factor(Gene, levels = Gene))
ggplot(plotTab, aes(x=Gene, y = nFDR.local)) + geom_bar(stat="identity",fill=colList[2]) + 
  geom_text(aes(label = paste0("n=", nFDR.local)),vjust=-1,col=colList[1]) + 
  theme_half + theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5)) +
  ylab("Number of associations\n(5% FDR)") + xlab("")


sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS  10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] latex2exp_0.4.0             forcats_0.5.1              
 [3] stringr_1.4.0               dplyr_1.0.5                
 [5] purrr_0.3.4                 readr_1.4.0                
 [7] tidyr_1.1.3                 tibble_3.1.0               
 [9] ggplot2_3.3.3               tidyverse_1.3.0            
[11] IHW_1.16.0                  proDA_1.2.0                
[13] DESeq2_1.28.1               SummarizedExperiment_1.18.2
[15] DelayedArray_0.14.1         matrixStats_0.58.0         
[17] Biobase_2.48.0              GenomicRanges_1.40.0       
[19] GenomeInfoDb_1.24.2         IRanges_2.22.2             
[21] S4Vectors_0.26.1            BiocGenerics_0.34.0        
[23] limma_3.44.3               

loaded via a namespace (and not attached):
 [1] colorspace_2.0-0       ellipsis_0.3.1         rprojroot_2.0.2       
 [4] XVector_0.28.0         fs_1.5.0               rstudioapi_0.13       
 [7] farver_2.1.0           bit64_4.0.5            AnnotationDbi_1.50.3  
[10] fansi_0.4.2            lubridate_1.7.10       xml2_1.3.2            
[13] splines_4.0.2          cachem_1.0.4           geneplotter_1.66.0    
[16] knitr_1.31             jsonlite_1.7.2         workflowr_1.6.2       
[19] broom_0.7.5            annotate_1.66.0        dbplyr_2.1.0          
[22] compiler_4.0.2         httr_1.4.2             backports_1.2.1       
[25] assertthat_0.2.1       Matrix_1.3-2           fastmap_1.1.0         
[28] cli_2.3.1              later_1.1.0.1          htmltools_0.5.1.1     
[31] tools_4.0.2            gtable_0.3.0           glue_1.4.2            
[34] GenomeInfoDbData_1.2.3 Rcpp_1.0.6             slam_0.1-48           
[37] cellranger_1.1.0       jquerylib_0.1.3        vctrs_0.3.6           
[40] xfun_0.21              rvest_1.0.0            lifecycle_1.0.0       
[43] XML_3.99-0.5           zlibbioc_1.34.0        scales_1.1.1          
[46] hms_1.0.0              promises_1.2.0.1       RColorBrewer_1.1-2    
[49] yaml_2.2.1             memoise_2.0.0          sass_0.3.1            
[52] stringi_1.5.3          RSQLite_2.2.3          highr_0.8             
[55] genefilter_1.70.0      BiocParallel_1.22.0    rlang_0.4.10          
[58] pkgconfig_2.0.3        bitops_1.0-6           evaluate_0.14         
[61] lattice_0.20-41        lpsymphony_1.16.0      labeling_0.4.2        
[64] bit_4.0.4              tidyselect_1.1.0       magrittr_2.0.1        
[67] R6_2.5.0               generics_0.1.0         DBI_1.1.1             
[70] pillar_1.5.1           haven_2.3.1            withr_2.4.1           
[73] survival_3.2-7         RCurl_1.98-1.2         modelr_0.1.8          
[76] crayon_1.4.1           fdrtool_1.2.16         utf8_1.1.4            
[79] rmarkdown_2.7          locfit_1.5-9.4         grid_4.0.2            
[82] readxl_1.3.1           blob_1.2.1             git2r_0.28.0          
[85] reprex_1.0.0           digest_0.6.27          xtable_1.8-4          
[88] httpuv_1.5.5           munsell_0.5.0          bslib_0.2.4