Last updated: 2020-06-02

Checks: 5 2

Knit directory: Proteomics/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200227) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

The following chunks had caches available:
  • unnamed-chunk-12
  • unnamed-chunk-16
  • unnamed-chunk-6
  • unnamed-chunk-7

To ensure reproducibility of the results, delete the cache directory complexAnalysis_IGHV_cache and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE when running wflow_build() or wflow_publish().

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/complexAnalysis_IGHV_cache/
    Ignored:    analysis/complexAnalysis_trisomy12_alteredPQR_cache/
    Ignored:    analysis/complexAnalysis_trisomy12_cache/
    Ignored:    analysis/correlateCLLPD_cache/
    Ignored:    code/.Rhistory
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  analysis/CNVanalysis_11q.Rmd
    Untracked:  analysis/CNVanalysis_trisomy12.Rmd
    Untracked:  analysis/CNVanalysis_trisomy19.Rmd
    Untracked:  analysis/analysisSplicing.Rmd
    Untracked:  analysis/analysisTrisomy19.Rmd
    Untracked:  analysis/annotateCNV.Rmd
    Untracked:  analysis/complexAnalysis_IGHV.Rmd
    Untracked:  analysis/complexAnalysis_trisomy12.Rmd
    Untracked:  analysis/correlateGenomic_PC12adjusted.Rmd
    Untracked:  analysis/correlateGenomic_noBlock.Rmd
    Untracked:  analysis/correlateGenomic_noBlock_MCLL.Rmd
    Untracked:  analysis/correlateGenomic_noBlock_UCLL.Rmd
    Untracked:  analysis/default.css
    Untracked:  analysis/del11q.pdf
    Untracked:  analysis/del11q_norm.pdf
    Untracked:  analysis/peptideValidate.Rmd
    Untracked:  analysis/plotExpressionCNV.Rmd
    Untracked:  analysis/processPeptides_LUMOS.Rmd
    Untracked:  analysis/style.css
    Untracked:  analysis/trisomy12.pdf
    Untracked:  analysis/trisomy12_AFcor.Rmd
    Untracked:  analysis/trisomy12_norm.pdf
    Untracked:  code/AlteredPQR.R
    Untracked:  code/utils.R
    Untracked:  data/190909_CLL_prot_abund_med_norm.tsv
    Untracked:  data/190909_CLL_prot_abund_no_norm.tsv
    Untracked:  data/20190423_Proteom_submitted_samples_bereinigt.xlsx
    Untracked:  data/20191025_Proteom_submitted_samples_final.xlsx
    Untracked:  data/LUMOS/
    Untracked:  data/LUMOS_peptides/
    Untracked:  data/LUMOS_protAnnotation.csv
    Untracked:  data/LUMOS_protAnnotation_fix.csv
    Untracked:  data/SampleAnnotation_cleaned.xlsx
    Untracked:  data/example_proteomics_data
    Untracked:  data/facTab_IC50atLeast3New.RData
    Untracked:  data/gmts/
    Untracked:  data/mapEnsemble.txt
    Untracked:  data/mapSymbol.txt
    Untracked:  data/proteins_in_complexes
    Untracked:  data/pyprophet_export_aligned.csv
    Untracked:  data/timsTOF_protAnnotation.csv
    Untracked:  output/LUMOS_processed.RData
    Untracked:  output/cnv_plots.zip
    Untracked:  output/cnv_plots/
    Untracked:  output/cnv_plots_norm.zip
    Untracked:  output/dxdCLL.RData
    Untracked:  output/exprCNV.RData
    Untracked:  output/pepCLL_lumos.RData
    Untracked:  output/pepTab_lumos.RData
    Untracked:  output/plotCNV_allChr11_diff.pdf
    Untracked:  output/plotCNV_del11q_sum.pdf
    Untracked:  output/proteomic_LUMOS_20200227.RData
    Untracked:  output/proteomic_LUMOS_20200320.RData
    Untracked:  output/proteomic_LUMOS_20200430.RData
    Untracked:  output/proteomic_timsTOF_20200227.RData
    Untracked:  output/splicingResults.RData
    Untracked:  output/timsTOF_processed.RData
    Untracked:  plotCNV_del11q_diff.pdf

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   analysis/analysisSF3B1.Rmd
    Modified:   analysis/compareProteomicsRNAseq.Rmd
    Modified:   analysis/correlateCLLPD.Rmd
    Modified:   analysis/correlateGenomic.Rmd
    Deleted:    analysis/correlateGenomic_removePC.Rmd
    Modified:   analysis/correlateMIR.Rmd
    Modified:   analysis/correlateMethylationCluster.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/predictOutcome.Rmd
    Modified:   analysis/processProteomics_LUMOS.Rmd
    Modified:   analysis/qualityControl_LUMOS.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Load libraries and dataset

library(SummarizedExperiment)
library(tidygraph)
library(DGCA)
library(DESeq2)
library(proDA)
library(cowplot)
library(igraph)
library(ggraph)
library(tidyverse)

Prepare datasets

Using LUMOS dataset

load("../output/proteomic_LUMOS_20200430.RData")
load("../../var/patmeta_200522.RData")
load("../../var/ddsrna_180717.RData")
protCLL$IGHV.status <- factor(protCLL$IGHV.status, levels = c("U","M"))

Using the protein complex information from database CORUM

int_pairs = read.table ("../data/proteins_in_complexes", sep = "\t", stringsAsFactors = FALSE, header = T)

The patients with unmutated IGHV status are defined as reference.

The analysis goal is to see whether IGHV affect protein complexes landscape. No gene dosage effect is involved here.

Differential protein expression analysis

Detect protein abundance changes related to IGHV

exprMat <- assays(protCLL)[["count"]]
designMat <- data.frame(row.names  = colnames(protCLL), IGHV = protCLL$IGHV.status, trisomy12 = protCLL$trisomy12)
fit <- proDA(exprMat, design = ~ .,
             col_data = designMat)
corRes <- test_diff(fit, "IGHVM") %>%
    dplyr::rename(id = name, logFC = diff, t=t_statistic,
                  P.Value = pval, adj.P.Val = adj_pval) %>% 
    mutate(name = rowData(protCLL[id,])$hgnc_symbol) %>%
    select(name, id, logFC, t, P.Value, adj.P.Val) %>%  
    arrange(P.Value) %>% as_tibble()

corRes.sig <- filter(corRes, adj.P.Val <0.05) %>% 
  mutate(direction = ifelse(t>0, "Up","Down"))

Detect differential complex formations based on the algorithm from Marija Buljan

Run AlteredPRQ algorithm to detect protein complex ratio complex changes

source ("../code/AlteredPQR.R")
quant_data_all = assays(protCLL)[["QRILC"]]
cols_with_reference_data = seq(ncol(protCLL))[protCLL$IGHV.status %in% "U"]
RepresentativePairs = Altered_PQR(modif_z_score_threshold = 3.0, fraction_of_samples_threshold = 0.3)
[1] "Running"
[1] "..."
[1] "..."
[1] "Top 0.1, 1 and 5% upper and lower z-score values are: 9.20327216455267 4.39550324313987 2.35629365075977 and -7.21186423614476 -3.74156821383189 -2.07263543774116."
[1] "Top 1% of the absolute values for the modified z-scores is 5.13854615164948."

Re-format output

protRes.pqr <- lapply(RepresentativePairs, function(x) x) %>% bind_cols() %>%
  separate(Protein_pair, into = c("idA","idB"),"-") %>%
  mutate(protA = rowData(protCLL[idA,])$hgnc_symbol,
         protB = rowData(protCLL[idB,])$hgnc_symbol,
         chrA = rowData(protCLL[idA,])$chromosome_name,
         chrB = rowData(protCLL[idB,])$chromosome_name) %>% mutate(idx = seq(nrow(.)))%>%
  mutate(pair=map2_chr(idA, idB, ~paste0(sort(c(.x,.y)), collapse = "-")))

Run the same algorithm on RNA expression data

dds$IGHV.status <- patMeta[match(dds$PatID,patMeta$Patient.ID),]$IGHV.status
rowData(dds)$uniprotID <- rownames(protCLL)[match(rownames(dds), rowData(protCLL)$ensembl_gene_id)]
ddsSub <- dds[!is.na(rowData(dds)$uniprotID), dds$PatID %in% colnames(protCLL)]
rownames(ddsSub) <- rowData(ddsSub)$uniprotID
ddsSub.vst <- varianceStabilizingTransformation(ddsSub)
source ("../code/AlteredPQR.R")
quant_data_all = assay(ddsSub.vst)
cols_with_reference_data = seq(ncol(ddsSub.vst))[ddsSub.vst$IGHV.status %in% "U"]
RepresentativePairs = Altered_PQR(modif_z_score_threshold = 3.0, fraction_of_samples_threshold = 0.3)
[1] "Running"
[1] "..."
[1] "..."
[1] "Top 0.1, 1 and 5% upper and lower z-score values are: 9.58881644825238 3.85797889859497 2.32724046637626 and -6.54342340545538 -3.44243808190723 -2.07406753271959."
[1] "Top 1% of the absolute values for the modified z-scores is 4.43159081827063."
rnaRes.pqr <- lapply(RepresentativePairs, function(x) x) %>% bind_cols() %>%
  separate(Protein_pair, into = c("idA","idB"),"-") %>%
  dplyr::rename(rnaChange = Change, rnaScore= Score) %>%
  mutate(pair=map2_chr(idA, idB, ~paste0(sort(c(.x,.y)), collapse = "-"))) %>%
  select(pair, rnaScore, rnaChange)

Combine protein and RNA result

comRes.pqr <- left_join(protRes.pqr, rnaRes.pqr, by ="pair") %>%
  mutate(explainedByRNA = ifelse(is.na(rnaChange), "no", 
                                 ifelse(Change == rnaChange, "yes", "no")))

Exploring results

List of detected pairs

comRes.pqr %>% select(protA, protB, Score, Change, chrA, chrB, explainedByRNA) %>%
  mutate(Score = format(Score, digits = 1)) %>%
  DT::datatable() 

How many of those changes can be explained at RNA level

table(comRes.pqr$explainedByRNA)

 no yes 
156   3 

Visualization using network plot

All detected pairs are shown Build network

comRes.filt <- filter(comRes.pqr, Score > 0)

#get node list
allNodes <- union(comRes.filt$protA, comRes.filt$protB) 

nodeList <- data.frame(id = seq(length(allNodes))-1, name = allNodes, stringsAsFactors = FALSE) %>%
  mutate(group = corRes.sig[match(name, corRes.sig$name),]$direction) %>%
  mutate(group = ifelse(is.na(group),"ns",group))

#get edge list
edgeList <- select(comRes.filt, protA, protB, Change, explainedByRNA) %>%
  dplyr::rename(Source = protA, Target = protB) %>% 
  mutate(Source = nodeList[match(Source,nodeList$name),]$id,
         Target = nodeList[match(Target, nodeList$name),]$id
         ) %>%
  data.frame(stringsAsFactors = FALSE)

net <- graph_from_data_frame(vertices = nodeList, d=edgeList, directed = FALSE)

Visualize using ggraph

tidyNet <- as_tbl_graph(net)
ggraph(tidyNet) + geom_edge_link(aes(color = Change,edge_linetype = explainedByRNA), width=1) + 
  geom_node_point(aes(color =group), size=4) + 
  geom_node_text(aes(label = name), repel = TRUE) +
  scale_color_manual(values = c(Up = "pink",Down = "lightblue", ns="grey"))+
  theme_graph() 

The proteins up-regulated in M-CLL samples are colored by red, down-regulated proteins are colored by cyan and the proteins with no significant changes are colored by grey. The color of the edges indication the whether the ratio of two proteins in pairs are increased or decreased in the reference group.

Inspecting some potentially interesting pairs

plotPair <- function(comRes, protList, protCLL, gene) { 
  pairList <- filter(comRes, protA %in% protList | protB %in% protList)
  plotList <- lapply(seq(nrow(pairList)), function(i) {
    idA <- pairList[i,]$idA
    idB <- pairList[i,]$idB
    protA <- pairList[i,]$protA
    protB  <- pairList[i,]$protB
    idPair <- c(idA, idB)
    protPair <- c(protA, protB)
    ord <- order(protPair)
    idPair <- idPair[ord]
    protPair <- protPair[ord]
    plotTab <- assays(protCLL)[["count"]][idPair,] %>%
      t() %>% data.frame()
    colnames(plotTab) <- protPair
    plotTab$logRatio <- log2(plotTab[,1]) - log2(plotTab[,2])
    plotTab <- rownames_to_column(plotTab,"patID") %>%
      mutate(status = factor(protCLL[,patID][[gene]])) %>%
      filter(!is.na(logRatio))
    histP <- ggplot(plotTab, aes(x=logRatio, fill = status, col = status)) +
      geom_histogram(position = "identity", alpha=0.5) +
      ggtitle(sprintf("Stoichiometry: %s ~ %s",protA, protB))
    corP <- ggplot(plotTab, aes_string(x=protA, y=protB, col="status")) + 
      geom_point() + geom_smooth(formula = y~x, method = "lm") +
      scale_color_discrete(name = gene)
    plot_grid(histP, corP)
  })
  return(plotList)
}
plotPair.rna <- function(comRes, protList, ddsSub.vst, gene) { 
  pairList <- filter(comRes, protA %in% protList | protB %in% protList)
  plotList <- lapply(seq(nrow(pairList)), function(i) {
    idA <- pairList[i,]$idA
    idB <- pairList[i,]$idB
    protA <- pairList[i,]$protA
    protB  <- pairList[i,]$protB
    idPair <- c(idA, idB)
    protPair <- c(protA, protB)
    ord <- order(protPair)
    idPair <- idPair[ord]
    protPair <- protPair[ord]
    plotTab <- assay(ddsSub.vst)[idPair,] %>%
      t() %>% data.frame()
    colnames(plotTab) <- protPair
    plotTab$logRatio <- log2(plotTab[,1]) - log2(plotTab[,2])
    plotTab <- rownames_to_column(plotTab,"patID") %>%
      mutate(status = factor(ddsSub.vst[,patID][[gene]])) %>%
      filter(!is.na(logRatio))
    histP <- ggplot(plotTab, aes(x=logRatio, fill = status, col = status)) +
      geom_histogram(position = "identity", alpha=0.5) +
      ggtitle(sprintf("Stoichiometry: %s ~ %s",protPair[1], protPair[2]))
    corP <- ggplot(plotTab, aes_string(x=protPair[1], y=protPair[2], col="status")) + 
      geom_point() + geom_smooth(formula = y~x, method = "lm") +
      scale_color_discrete(name = gene)
    plot_grid(histP, corP)
  })
  return(plotList)
}

Pairs involving ZAP70

protList <- c("ZAP70")
plotPair(comRes.pqr, protList, protCLL, "IGHV.status")
[[1]]

Pairs involving IGHM

protList <- c("IGHM")
plotPair(comRes.pqr, protList, protCLL, "IGHV.status")
[[1]]


[[2]]


[[3]]

Pairs involving IGHD

protList <- c("IGHD")
plotPair(comRes.pqr, protList, protCLL, "IGHV.status")
[[1]]


[[2]]


[[3]]

Check those pairs at RNA level

Pairs involving ZAP70

protList <- c("ZAP70")
plotPair.rna(comRes.pqr, protList, ddsSub.vst, "IGHV.status")
[[1]]

Pairs involving IGHM

protList <- c("IGHM")
plotPair.rna(comRes.pqr, protList, ddsSub.vst, "IGHV.status")
[[1]]


[[2]]


[[3]]

Pairs involving IGHD

protList <- c("IGHD")
plotPair.rna(comRes.pqr, protList, ddsSub.vst, "IGHV.status")
[[1]]


[[2]]


[[3]]

Detect differential complex formations based on correlation test

Differential correlation detection using DGCA package

quant_data_all = assays(protCLL)[["QRILC"]]
quant_data_all <- quant_data_all[order(rownames(quant_data_all)),]

IGHV <- protCLL$IGHV.status
designMat <- model.matrix(~IGHV+0 )
colnames(designMat) <- c("WT","IGHV")
ddcor_res = ddcorAll(inputMat = quant_data_all, design = designMat,
  compare = c("WT", "IGHV"),
  adjust = "BH", heatmapPlot = FALSE, nPerm = 0, nPairs = "all")

Reformat output

comTab <- int_pairs %>%
  mutate(pair = map2_chr(ProtA, ProtB, ~paste0(sort(c(.x, .y)),collapse = "-"))) %>%
  separate(pair, c("Gene1","Gene2"), "-", remove = FALSE) %>%
  select(Gene1, Gene2) %>% mutate(inComplex= TRUE)

allRes <- left_join(ddcor_res, comTab, by = c("Gene1","Gene2")) %>%
  mutate(inComplex = ifelse(is.na(inComplex),FALSE,TRUE))

Distribution of p-values for protein in complexes and not in complexes

ggplot(allRes, aes(x=pValDiff, fill = inComplex)) + geom_histogram() + facet_wrap(~inComplex, scale="free") +
  xlim(0,1)

Not much difference.

Differential correlation detection on RNA level

quant_data_all = assay(ddsSub.vst)
quant_data_all <- quant_data_all[order(rownames(quant_data_all)),]

IGHV <- ddsSub.vst$IGHV.status
designMat <- model.matrix(~IGHV+0 )
colnames(designMat) <- c("WT","IGHV")
ddcor_res = ddcorAll(inputMat = quant_data_all, design = designMat,
  compare = c("WT", "IGHV"),
  adjust = "BH", heatmapPlot = FALSE, nPerm = 0, nPairs = "all")

rnaRes.cor <- ddcor_res %>%
  select(Gene1, Gene2,  pValDiff, pValDiff_adj, Classes) %>%
  dplyr::rename(p.rna = pValDiff, padj.rna = pValDiff_adj, Classes.rna = Classes)

Exploring the results

Select protein pairs involved in known complexes

comRes.cor <- filter(allRes, inComplex) %>%
   mutate(protA = rowData(protCLL[Gene1,])$hgnc_symbol,
         protB = rowData(protCLL[Gene2,])$hgnc_symbol,
         chrA = rowData(protCLL[Gene1,])$chromosome_name,
         chrB = rowData(protCLL[Gene2,])$chromosome_name) %>%
  mutate(idx = seq(nrow(.))) %>%
  mutate(p=pValDiff,padj = pValDiff_adj)

Add test results from RNA

comRes.cor <- left_join(comRes.cor, rnaRes.cor, by =c("Gene1","Gene2")) %>%
  mutate(explainedByRNA = ifelse(is.na(p.rna),"no",
                                 ifelse(padj.rna < 0.25 & Classes == Classes.rna,"yes","no")))

List of significant pairs (25% FDR) As this test is very stringent, I use the looser FDR cut-off here.

comRes.sig <- filter(comRes.cor) %>%
  mutate(padj = p.adjust(p, method = "BH"),
         ifSig = padj < 0.25) %>%
  filter(ifSig)
comRes.sig %>% select(protA, protB, p, padj, chrA, chrB, Classes, explainedByRNA) %>%
  mutate_if(is.numeric, formatC, digits=2, format="e") %>%
  DT::datatable() 

“Classes” is the direction of changes. “+” means positive correlation, “-” means negative correlation, “0” means no correlation. “0/+” means no correlation in U-CLL samples but positive correlation in M-CLL samples; “+/0” means positive correlations in U-CLL samples but no correlation in M-CLL samples. Any types of correlation changes may suggest a change of complex formation behavior.

Visualization

Visualize in network plot

comRes.filt <- comRes.sig %>% dplyr::rename(idA = Gene1, idB=Gene2)
#comRes.filt <- comRes
#get node list
allNodes <- union(comRes.filt$protA, comRes.filt$protB) 

nodeList <- data.frame(id = seq(length(allNodes))-1, name = allNodes, stringsAsFactors = FALSE) %>%
  mutate(group = corRes.sig[match(name, corRes.sig$name),]$direction) %>%
  mutate(group = ifelse(is.na(group),"ns",group)) 

#get edge list
edgeList <- select(comRes.filt, protA, protB, p, Classes) %>%
  dplyr::rename(Source = protA, Target = protB) %>% 
  mutate(Source = nodeList[match(Source,nodeList$name),]$id,
         Target = nodeList[match(Target, nodeList$name),]$id,
         Classes = as.character(Classes)) %>%
  data.frame(stringsAsFactors = FALSE)

net <- graph_from_data_frame(vertices = nodeList, d=edgeList, directed = FALSE)

Visualize using ggraph

tidyNet <- as_tbl_graph(net)
ggraph(tidyNet) + geom_edge_link(aes(color = Classes), width=1) + 
  geom_node_point(aes(color =group), size=4) + 
  geom_node_text(aes(label = name), repel = TRUE) +
  scale_color_manual(values = c(Up = "pink",Down = "lightblue", ns="grey"))+
  theme_graph() 

Inspecting some potentially interesting pairs

Pairs involving IGHD

protList <- c("IGHD")
plotPair(comRes.filt, protList, protCLL, "IGHV.status")
[[1]]


[[2]]

Pairs involving RIPK1

protList <- c("RIPK1")
plotPair(comRes.filt, protList, protCLL, "IGHV.status")
[[1]]


[[2]]

Pairs involving MAPK1

protList <- c("MAPK1")
plotPair(comRes.filt, protList, protCLL, "IGHV.status")
[[1]]

Pairs involving CHEK2

protList <- c("CHEK2")
plotPair(comRes.filt, protList, protCLL, "IGHV.status")
[[1]]

Pairs involving MTOR

protList <- c("MTOR")
plotPair(comRes.filt, protList, protCLL, "IGHV.status")
[[1]]

Check those pairs at RNA expression level

Pairs involving IGHD

protList <- c("IGHD")
plotPair.rna(comRes.filt, protList, ddsSub.vst, "IGHV.status")
[[1]]


[[2]]

Pairs involving RIPK1

protList <- c("RIPK1")
plotPair.rna(comRes.filt, protList, ddsSub.vst, "IGHV.status")
[[1]]


[[2]]

Pairs involving MAPK1

protList <- c("MAPK1")
plotPair.rna(comRes.filt, protList, ddsSub.vst, "IGHV.status")
[[1]]

Pairs involving CHEK2

protList <- c("CHEK2")
plotPair.rna(comRes.filt, protList, ddsSub.vst, "IGHV.status")
[[1]]

Pairs involving MTOR

protList <- c("MTOR")
plotPair.rna(comRes.filt, protList, ddsSub.vst, "IGHV.status")
[[1]]


sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.15.4

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] forcats_0.4.0               stringr_1.4.0              
 [3] dplyr_0.8.5                 purrr_0.3.3                
 [5] readr_1.3.1                 tidyr_1.0.0                
 [7] tibble_3.0.0                tidyverse_1.3.0            
 [9] ggraph_1.0.2                igraph_1.2.4.1             
[11] cowplot_0.9.4               ggplot2_3.3.0              
[13] proDA_1.1.2                 DESeq2_1.24.0              
[15] DGCA_1.0.2                  tidygraph_1.1.2            
[17] SummarizedExperiment_1.14.0 DelayedArray_0.10.0        
[19] BiocParallel_1.18.0         matrixStats_0.54.0         
[21] Biobase_2.44.0              GenomicRanges_1.36.0       
[23] GenomeInfoDb_1.20.0         IRanges_2.18.1             
[25] S4Vectors_0.22.0            BiocGenerics_0.30.0        

loaded via a namespace (and not attached):
  [1] readxl_1.3.1           backports_1.1.4        Hmisc_4.2-0           
  [4] workflowr_1.6.0        plyr_1.8.4             splines_3.6.0         
  [7] crosstalk_1.0.0        robust_0.4-18.1        digest_0.6.19         
 [10] foreach_1.4.4          htmltools_0.4.0        viridis_0.5.1         
 [13] GO.db_3.8.2            magrittr_1.5           checkmate_2.0.0       
 [16] memoise_1.1.0          fit.models_0.5-14      cluster_2.1.0         
 [19] doParallel_1.0.14      fastcluster_1.1.25     annotate_1.62.0       
 [22] modelr_0.1.5           colorspace_1.4-1       rvest_0.3.5           
 [25] blob_1.1.1             rrcov_1.4-9            ggrepel_0.8.1         
 [28] haven_2.2.0            xfun_0.8               crayon_1.3.4          
 [31] RCurl_1.95-4.12        jsonlite_1.6           genefilter_1.66.0     
 [34] impute_1.58.0          survival_2.44-1.1      iterators_1.0.10      
 [37] glue_1.3.2             polyclip_1.10-0        gtable_0.3.0          
 [40] zlibbioc_1.30.0        XVector_0.24.0         DEoptimR_1.0-8        
 [43] scales_1.1.0           mvtnorm_1.0-11         DBI_1.0.0             
 [46] Rcpp_1.0.1             viridisLite_0.3.0      xtable_1.8-4          
 [49] htmlTable_1.13.1       foreign_0.8-71         bit_1.1-14            
 [52] preprocessCore_1.46.0  Formula_1.2-3          DT_0.7                
 [55] htmlwidgets_1.3        httr_1.4.1             RColorBrewer_1.1-2    
 [58] acepack_1.4.1          ellipsis_0.2.0         pkgconfig_2.0.2       
 [61] XML_3.98-1.20          farver_2.0.3           nnet_7.3-12           
 [64] dbplyr_1.4.2           locfit_1.5-9.1         dynamicTreeCut_1.63-1 
 [67] labeling_0.3           tidyselect_1.0.0       rlang_0.4.5           
 [70] later_0.8.0            AnnotationDbi_1.46.0   cellranger_1.1.0      
 [73] munsell_0.5.0          tools_3.6.0            cli_1.1.0             
 [76] generics_0.0.2         RSQLite_2.1.1          broom_0.5.2           
 [79] evaluate_0.14          yaml_2.2.0             knitr_1.23            
 [82] bit64_0.9-7            fs_1.4.0               robustbase_0.93-5     
 [85] nlme_3.1-140           mime_0.7               xml2_1.2.2            
 [88] compiler_3.6.0         rstudioapi_0.10        reprex_0.3.0          
 [91] tweenr_1.0.1           geneplotter_1.62.0     pcaPP_1.9-73          
 [94] stringi_1.4.3          lattice_0.20-38        Matrix_1.2-17         
 [97] vctrs_0.2.4            pillar_1.4.3           lifecycle_0.2.0       
[100] data.table_1.12.2      bitops_1.0-6           httpuv_1.5.1          
[103] extraDistr_1.8.11      R6_2.4.0               latticeExtra_0.6-28   
[106] promises_1.0.1         gridExtra_2.3          codetools_0.2-16      
[109] MASS_7.3-51.4          assertthat_0.2.1       rprojroot_1.3-2       
[112] withr_2.1.2            GenomeInfoDbData_1.2.1 mgcv_1.8-28           
[115] hms_0.5.2              grid_3.6.0             rpart_4.1-15          
[118] rmarkdown_1.13         git2r_0.26.1           ggforce_0.2.2         
[121] shiny_1.3.2            lubridate_1.7.4        WGCNA_1.68            
[124] base64enc_0.1-3