Last updated: 2024-05-21

Checks: 5 1

Knit directory: RA_Tcell_omics/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity itโ€™s best to always run the code in an empty environment.

The command set.seed(20221110) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Tracking code development and connecting the code version to the results is critical for reproducibility. To start using Git, open the Terminal and type git init in your project directory.


This project is not being versioned with Git. To obtain the full reproducibility benefits of using workflowr, please see ?wflow_start.


Load libraries

library(vsn)
library(jyluMisc)
library(SummarizedExperiment)
library(tidyverse)
knitr::opts_chunk$set(warning = FALSE, message = FALSE)
source("../code/helper.R")

Read in metabolomic data

sampleTab <- readxl::read_xlsx("../data/240315_54xMS_#24-17_results.xlsx", sheet = "sampleAnno") %>%
  mutate(sampleID = sprintf("MS%02s",Label)) %>%
  dplyr::rename(patID = Name) %>%
  mutate(Time = ifelse(is.na(Time),"d0",Time),
         group = str_extract(patID,"HC|CNT|Keto")) %>%
  select(-Label)

metaTab <- readxl::read_xlsx("../data/240315_54xMS_#24-17_results.xlsx", sheet="Normalized") %>%
  pivot_longer(-Name, names_to = "sampleID", values_to = "count") %>%
  filter(Name != "Ribitol-5TMS  (internal standard, ISTD)")

#all(unique(metaTab$sampleID) %in% sampleTab$sampleID)

metaTab <- left_join(metaTab, sampleTab, by = "sampleID")
metaID <- distinct(metaTab, Name) %>% mutate(id = seq(nrow(.))) %>%
  mutate(id = paste0("meta",id)) 

metaTab <- left_join(metaTab, metaID, by = "Name") %>%
  mutate(count = ifelse(count <=0, NA, count),
         sampleID = paste0(patID,"_",Time)) %>%
  dplyr::rename(ID = id, time = Time, name = Name)

seMeta <- jyluMisc::tidyToSum(metaTab, rowID = "ID", colID = "sampleID",
                              values = "count",
                              annoRow = c("ID","name"),
                              annoCol = c("sampleID","patID","time","group"))

Exploratory analysis and QA

Visualize overall data distribution

Per sample

Before transformation

ggplot(metaTab, aes(x=sampleID, y=count)) +
    geom_boxplot() + geom_point(aes(col = time)) +
    theme(axis.text = element_text(angle = 90, hjust = 1, vjust = 0.5))

After simple log transformation

ggplot(metaTab, aes(x=sampleID, y=log2(count))) +
    geom_boxplot() + geom_point(aes(col = time)) +
    theme(axis.text = element_text(angle = 90, hjust = 1, vjust = 0.5))

After glog2 transformation

ggplot(metaTab, aes(x=sampleID, y=glog2(count))) +
    geom_boxplot() + geom_point(aes(col = time)) +
    theme(axis.text = element_text(angle = 90, hjust = 1, vjust = 0.5))

After VSN

metaMat <- assay(seMeta)
metaMat.vsn <- vsn::justvsn(metaMat)
metaTab.vsn <- as_tibble(metaMat.vsn, rownames = "ID") %>%
  pivot_longer(-ID, names_to = "sampleID", values_to = "normVsn")
metaTab <- left_join(metaTab, metaTab.vsn, by = c("ID","sampleID"))

ggplot(metaTab, aes(x=sampleID, y=normVsn)) +
    geom_boxplot() + geom_point(aes(col = time)) +
    theme(axis.text = element_text(angle = 90, hjust = 1, vjust = 0.5))

Data completeness per sample

countMat <- assay(seMeta)
plotTab <- tibble(sample = colnames(seMeta), 
                  perNA = colSums(is.na(countMat))/nrow(countMat),
                  time = seMeta$time)
ggplot(plotTab, aes(x=sample, y=1-perNA)) +
    geom_bar(stat = "identity", aes(fill = time)) +
    ylab("completeness") +
    theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0))

Plot a cumulative curve of missing value cut-off and remaining number of features

missRate <- tibble(id = rownames(countMat),
                   rate = rowSums(is.na(countMat))/ncol(countMat))
cumTab <- lapply(seq(0,1,0.05), function(cutRate) {
    tibble(cut= cutRate,
           per = sum(missRate$rate <= cutRate)/nrow(missRate))
} ) %>%
    bind_rows()
ggplot(cumTab, aes(x=cut,y=per)) +
    geom_line() +
    xlab("Allowed missing value rate") +
    ylab("Percentage of remaining features")

Missing value heatmap to check missing value structure

Visualize the missing value pattern

DEP::plot_missval(seMeta)

Missing value rate versus mean values

metaMat <- assay(seMeta)
plotTab <- tibble(meanVal = rowMeans(log2(metaMat), na.rm = TRUE),
                  dropRate = rowMeans(is.na(metaMat)))
ggplot(plotTab, aes(x=meanVal, y=dropRate)) +
  geom_point()

Keep metabolites detected in at least 20 percent of the samples

metaFilt <- seMeta[rowMeans(is.na(assay(seMeta))) < 0.8,]

dim(metaFilt)
[1] 134  53

Imputation and normalization

transformation

metaMat <- assay(metaFilt)
#normMat <- vsn::justvsn(metaMat)
normMat <- glog2(metaMat)
metaNorm <- metaFilt
assay(metaNorm) <- normMat

vsn::meanSdPlot(normMat)

Imputation

metaImp.MinDet <- DEP::impute(metaNorm, "MinDet")
metaImp.zero <- DEP::impute(metaNorm, "zero")
metaImp.bpca<- DEP::impute(metaNorm, "bpca")
assays(metaFilt)[["norm"]] <- normMat
assays(metaFilt)[["imputed"]] <- assay(metaImp.MinDet)
assays(metaFilt)[["imputed.bpca"]] <- assay(metaImp.bpca)
assays(metaFilt)[["imputed.zero"]] <- assay(metaImp.zero)

Distribution after imputation

countMat <- assays(metaFilt)[["imputed.bpca"]]
countTab <- countMat %>% as_tibble(rownames = "id") %>% 
    pivot_longer(-id) %>%
    filter(!is.na(value))
ggplot(countTab, aes(x=name, y=value)) +
    geom_boxplot() + geom_point()

Heatmap visualization

library(pheatmap)
#select top 1000 most variant
colAnno <- colData(metaFilt) %>% data.frame()
colAnno <- colAnno[,c("time","group")]
#colAnno[["sampleName"]] <- NULL
plotMat <- assays(metaFilt)[["imputed.bpca"]]
plotMat <- jyluMisc::mscale(plotMat, center = TRUE, scale = TRUE, censor = 4)
pheatmap(plotMat, show_rownames = FALSE, scale = "none", 
         annotation_col = colAnno,
         clustering_method = "ward.D2")

PCA

plotMat  <- assays(metaFilt)[["imputed.bpca"]]
prRes <- prcomp(t(plotMat), scale. = FALSE, center = TRUE)
plotTab <- prRes$x %>% as_tibble(rownames = "sampleID") %>%
    left_join(as_tibble(colAnno, rownames = "sampleID"))
ggplot(plotTab, aes(x=PC1, y=PC2, col = group)) +
    geom_point() +
    ggrepel::geom_text_repel(aes(label = sampleID))

prRes <- prcomp(t(plotMat), scale. = FALSE, center = FALSE)
plotTab <- prRes$x %>% as_tibble(rownames = "sampleID") %>%
    left_join(as_tibble(colAnno, rownames = "sampleID"))
ggplot(plotTab, aes(x=PC3, y=PC4, col = group)) +
    geom_point() +
    ggrepel::geom_text_repel(aes(label = sampleID))

Analysis focused on keto group

metaKeto <- metaFilt[,metaFilt$group == "Keto"]

Heatmap visualization

library(pheatmap)
#select top 1000 most variant
colAnno <- colData(metaKeto) %>% data.frame()
colAnno <- colAnno[,c("time","group")]
#colAnno[["sampleName"]] <- NULL
plotMat <- assays(metaKeto)[["imputed.bpca"]]
plotMat <- jyluMisc::mscale(plotMat, center = TRUE, scale = TRUE, censor = 4)
pheatmap(plotMat, show_rownames = FALSE, scale = "none", 
         annotation_col = colAnno,
         clustering_method = "ward.D2")

PCA

plotMat <- assays(metaKeto)[["imputed.bpca"]]
prRes <- prcomp(t(plotMat), scale. = FALSE, center = TRUE)
plotTab <- prRes$x %>% as_tibble(rownames = "sampleID") %>%
    left_join(as_tibble(colAnno, rownames = "sampleID"))
ggplot(plotTab, aes(x=PC1, y=PC2, col = time)) +
    geom_point() +
    ggrepel::geom_text_repel(aes(label = sampleID))

prRes <- prcomp(t(plotMat), scale. = FALSE, center = FALSE)
plotTab <- prRes$x %>% as_tibble(rownames = "sampleID") %>%
    left_join(as_tibble(colAnno, rownames = "sampleID"))
ggplot(plotTab, aes(x=PC3, y=PC4, col = time)) +
    geom_point() +
    ggrepel::geom_text_repel(aes(label = sampleID))

Identify change between d12 and d0

library(proDA)
metaMat <- assays(metaKeto)[["norm"]]
designMat <- model.matrix(~patID + time, colData(metaKeto))

fit <- proDA(metaMat, design = designMat)

resTab <- test_diff(fit, contrast = "timed12") %>%
  arrange(pval) %>%
  mutate(metabolite = rowData(seMeta)[name,]$name)
hist(resTab$pval)

Not strong difference

metabolites with p-value < 0.1

resTab.sig <- filter(resTab, pval < 0.1)
resTab.sig %>% select(metabolite, pval, adj_pval, diff) %>%
  mutate_if(is.numeric, formatC, digits=1) %>%
  DT::datatable()

Plot

pList <- lapply(seq(nrow(resTab.sig)), function(i) {
  rec <- resTab.sig[i,]
  plotTab <- tibble(abundance = metaMat[rec$name,],
                    time = metaKeto$time,
                    patID = metaKeto$patID) 
  ggplot(plotTab, aes(x=time, y=abundance)) +
    geom_point(aes(col = time)) +
    geom_line(aes(group = patID), linetype = "dashed") +
    ggtitle(sprintf("%s (p=%1.2f)", rec$metabolite, rec$pval)) +
    theme_bw()
})

cowplot::plot_grid(plotlist = pList,ncol=2)

Identify change between d12 and d0, try removing two potential outlier patient, Keto06 and Keto15

library(proDA)
metaKeto <- metaKeto[,!metaKeto$patID %in% c("Keto06","Keto15")]
metaMat <- assays(metaKeto)[["norm"]]
designMat <- model.matrix(~patID + time, colData(metaKeto))

fit <- proDA(metaMat, design = designMat)

resTab <- test_diff(fit, contrast = "timed12") %>%
  arrange(pval) %>%
  mutate(metabolite = rowData(seMeta)[name,]$name)
hist(resTab$pval)

Not strong difference

metabolites with p-value < 0.1

resTab.sig <- filter(resTab, pval < 0.1)
resTab.sig %>% select(metabolite, pval, adj_pval, diff) %>%
  mutate_if(is.numeric, formatC, digits=1) %>%
  DT::datatable()

Plot

pList <- lapply(seq(nrow(resTab.sig)), function(i) {
  rec <- resTab.sig[i,]
  plotTab <- tibble(abundance = metaMat[rec$name,],
                    time = metaKeto$time,
                    patID = metaKeto$patID) 
  ggplot(plotTab, aes(x=time, y=abundance)) +
    geom_point(aes(col = time)) +
    geom_line(aes(group = patID), linetype = "dashed") +
    ggtitle(sprintf("%s (p=%1.2f)", rec$metabolite, rec$pval)) +
    theme_bw()
})

cowplot::plot_grid(plotlist = pList,ncol=2)


sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur/Monterey 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] proDA_1.10.0                pheatmap_1.0.12            
 [3] forcats_0.5.1               stringr_1.4.1              
 [5] dplyr_1.1.4.9000            purrr_0.3.4                
 [7] readr_2.1.2                 tidyr_1.2.0                
 [9] tibble_3.2.1                ggplot2_3.4.1              
[11] tidyverse_1.3.2             SummarizedExperiment_1.26.1
[13] GenomicRanges_1.48.0        GenomeInfoDb_1.32.2        
[15] IRanges_2.30.0              S4Vectors_0.34.0           
[17] MatrixGenerics_1.8.1        matrixStats_0.62.0         
[19] jyluMisc_0.1.5              vsn_3.64.0                 
[21] Biobase_2.56.0              BiocGenerics_0.42.0        

loaded via a namespace (and not attached):
  [1] DEP_1.18.0             utf8_1.2.4             shinydashboard_0.7.2  
  [4] gmm_1.6-6              tidyselect_1.2.1       htmlwidgets_1.5.4     
  [7] grid_4.2.0             BiocParallel_1.30.3    norm_1.0-10.0         
 [10] maxstat_0.7-25         munsell_0.5.0          codetools_0.2-18      
 [13] preprocessCore_1.58.0  DT_0.23                withr_3.0.0           
 [16] colorspace_2.0-3       highr_0.9              knitr_1.39            
 [19] rstudioapi_0.13        ggsignif_0.6.3         mzID_1.34.0           
 [22] labeling_0.4.2         git2r_0.30.1           slam_0.1-50           
 [25] GenomeInfoDbData_1.2.8 KMsurv_0.1-5           farver_2.1.1          
 [28] rprojroot_2.0.3        vctrs_0.6.5            generics_0.1.3        
 [31] TH.data_1.1-1          xfun_0.31              sets_1.0-21           
 [34] R6_2.5.1               doParallel_1.0.17      clue_0.3-61           
 [37] MsCoreUtils_1.8.0      bitops_1.0-7           cachem_1.0.6          
 [40] fgsea_1.22.0           DelayedArray_0.22.0    assertthat_0.2.1      
 [43] promises_1.2.0.1       scales_1.2.0           multcomp_1.4-19       
 [46] googlesheets4_1.0.0    gtable_0.3.0           extraDistr_1.9.1      
 [49] Cairo_1.6-0            affy_1.74.0            sandwich_3.0-2        
 [52] workflowr_1.7.0        rlang_1.1.3            mzR_2.30.0            
 [55] GlobalOptions_0.1.2    splines_4.2.0          rstatix_0.7.0         
 [58] gargle_1.2.0           impute_1.70.0          hexbin_1.28.2         
 [61] broom_1.0.0            BiocManager_1.30.18    yaml_2.3.5            
 [64] abind_1.4-5            modelr_0.1.8           crosstalk_1.2.0       
 [67] backports_1.4.1        httpuv_1.6.6           tools_4.2.0           
 [70] relations_0.6-12       affyio_1.66.0          ellipsis_0.3.2        
 [73] gplots_3.1.3           jquerylib_0.1.4        RColorBrewer_1.1-3    
 [76] MSnbase_2.22.0         plyr_1.8.7             Rcpp_1.0.9            
 [79] visNetwork_2.1.0       zlibbioc_1.42.0        RCurl_1.98-1.7        
 [82] ggpubr_0.4.0           GetoptLong_1.0.5       cowplot_1.1.1         
 [85] zoo_1.8-10             ggrepel_0.9.1          haven_2.5.0           
 [88] cluster_2.1.3          exactRankTests_0.8-35  fs_1.5.2              
 [91] magrittr_2.0.3         magick_2.7.3           data.table_1.14.8     
 [94] circlize_0.4.15        reprex_2.0.1           survminer_0.4.9       
 [97] pcaMethods_1.88.0      googledrive_2.0.0      mvtnorm_1.1-3         
[100] ProtGenerics_1.28.0    hms_1.1.1              shinyjs_2.1.0         
[103] mime_0.12              evaluate_0.15          xtable_1.8-4          
[106] XML_3.99-0.10          readxl_1.4.0           gridExtra_2.3         
[109] shape_1.4.6            compiler_4.2.0         KernSmooth_2.23-20    
[112] ncdf4_1.19             crayon_1.5.2           htmltools_0.5.4       
[115] later_1.3.0            tzdb_0.3.0             lubridate_1.8.0       
[118] DBI_1.1.3              dbplyr_2.2.1           ComplexHeatmap_2.12.1 
[121] tmvtnorm_1.5           MASS_7.3-58            Matrix_1.5-4          
[124] car_3.1-0              cli_3.6.2              imputeLCMD_2.1        
[127] marray_1.74.0          parallel_4.2.0         igraph_1.3.4          
[130] pkgconfig_2.0.3        km.ci_0.5-6            piano_2.12.0          
[133] MALDIquant_1.21        xml2_1.3.3             foreach_1.5.2         
[136] bslib_0.4.1            XVector_0.36.0         drc_3.0-1             
[139] rvest_1.0.2            digest_0.6.30          rmarkdown_2.14        
[142] cellranger_1.1.0       fastmatch_1.1-3        survMisc_0.5.6        
[145] shiny_1.7.4            gtools_3.9.3           rjson_0.2.21          
[148] lifecycle_1.0.4        jsonlite_1.8.3         carData_3.0-5         
[151] limma_3.52.2           fansi_1.0.6            pillar_1.9.0          
[154] lattice_0.20-45        fastmap_1.1.0          httr_1.4.3            
[157] plotrix_3.8-2          survival_3.4-0         glue_1.7.0            
[160] png_0.1-7              iterators_1.0.14       stringi_1.7.8         
[163] sass_0.4.2             caTools_1.18.2