Last updated: 2023-06-14

Checks: 5 1

Knit directory: combiCART/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity itโ€™s best to always run the code in an empty environment.

The command set.seed(20221110) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Tracking code development and connecting the code version to the results is critical for reproducibility. To start using Git, open the Terminal and type git init in your project directory.


This project is not being versioned with Git. To obtain the full reproducibility benefits of using workflowr, please see ?wflow_start.


Here, synergy means only if the observed combination effect is stronger than expected additive effect of drug (+NT) and CAR-T, i.e one plus one larger than two, they will be considered as candidates

Load packages and dataset

library(readxl)
library(tidyverse)
knitr::opts_chunk$set(warning = FALSE, message = FALSE)
source("../code/helper.R")
load("../output/screenData.RData")

Use drug effect normalized by NT only wells for the down-stream analysis

screenData <- mutate(screenData, normVal = normVal.NT)

Calculate combination index using Bliss independence model

Get combination effect

comTab <- filter(screenData, Drug !="DMSO", Tcell == "CAR") %>%
  select(plateID, Drug, conc, normVal) %>%
  dplyr::rename(viabObs = normVal)

drugTab <- filter(screenData, Drug != "DMSO", Tcell == "NT") %>%
  select(plateID, Drug, conc, normVal) %>%
  dplyr::rename(viabDrug = normVal)

carTab <- filter(screenData, Drug == "DMSO", Tcell == "CAR") %>%
  select(plateID, normVal) %>% group_by(plateID) %>%
  summarise(viabCar = median(normVal)) 
synTab <- comTab %>% left_join(drugTab, by =c("plateID","Drug","conc")) %>%
  left_join(carTab, by = "plateID") %>%
  mutate(viabExp = viabDrug*viabCar) %>%
  mutate(CI = viabObs-viabExp,
         logCI = log10(viabObs/viabExp)) 

Remove combination if single agent effect (either drug or CAR) is already very strong (viability < 0.2) if all three donors

excludeTab <- synTab %>% mutate(toxic = (viabDrug < 0.2 | viabCar < 0.2)) %>%
  left_join(distinct(screenData, plateID, construct, cellTime), by = "plateID") %>%
  group_by(cellTime, construct, Drug, conc) %>% summarise(n=sum(toxic)) %>% ungroup()
synTab <- left_join(synTab, distinct(screenData, plateID, construct, cellTime), by = "plateID") %>%
  left_join(excludeTab, by =c("cellTime","construct","Drug","conc")) %>%
  filter(n<3) %>%
  dplyr::select(-cellTime, -construct, -n)

Visualize synergistic index per concentration in a heatmap

24 hours

plotTab <- left_join(synTab, distinct(screenData, plateID, time, construct)) %>%
  filter(time == "24h") %>%
  arrange(construct, plateID) %>%
  mutate(plateID = factor(plateID, levels = unique(plateID)))

ggplot(plotTab, aes(x=factor(conc), y=plateID, fill = CI)) +
  geom_tile() +
  facet_wrap(~Drug, ncol=4, scale = "free_x") +
  scale_fill_gradient2(low ="red",high="blue",mid="white") 

**Positive CI indicates antagonistic effect and negative CI indicates synergistic effect)

48 hours

plotTab <- left_join(synTab, distinct(screenData, plateID, time, construct)) %>%
  filter(time == "48h") %>%
  arrange(construct, plateID) %>%
  mutate(plateID = factor(plateID, levels = unique(plateID)))

ggplot(plotTab, aes(x=factor(conc), y=plateID, fill = CI)) +
  geom_tile() +
  facet_wrap(~Drug, ncol=4, scale = "free_x") +
  scale_fill_gradient2(low ="red",high="blue",mid="white") 

**Positive CI indicates antagonistic effect and negative CI indicates synergistic effect)

Rank drugs based on their median combination index (for every concentration)

Only drugs with median CI < 0 (synergistic or additive) are shown

24 hours

plotTab <- left_join(synTab, distinct(screenData, plateID, time, construct)) %>%
  left_join(distinct(screenData, Drug, conc, concStep), by = c("Drug","conc")) %>%
  filter(time == "24h") %>%
  mutate(drugConc = paste0(Drug,"_", conc)) %>%
  group_by(drugConc) %>% mutate(medVal = median(CI)) %>% arrange(medVal) %>%
  ungroup()%>%
  mutate(drugConc = factor(drugConc, levels = unique(drugConc))) %>%
  filter(medVal < 0)

ggplot(plotTab, aes(x=drugConc, y=CI, fill = concStep)) +
  ggbeeswarm::geom_quasirandom(shape = 21, alpha =0.5) +
  stat_summary(fun.y = median, fun.ymin = median, fun.ymax = median, color = "darkred",
          geom = "crossbar", width = 0.5) + 
  coord_cartesian(ylim=c(-0.5,0.5)) + 
  geom_hline(yintercept = 0, linetype = "dashed") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) 

48 hours

plotTab <- left_join(synTab, distinct(screenData, plateID, time, construct)) %>%
  left_join(distinct(screenData, Drug, conc, concStep), by = c("Drug","conc")) %>%
  filter(time == "48h") %>%
  mutate(drugConc = paste0(Drug,"_", conc)) %>%
  group_by(drugConc) %>% mutate(medVal = median(CI)) %>% arrange(medVal) %>%
  ungroup()%>%
  mutate(drugConc = factor(drugConc, levels = unique(drugConc))) %>%
  filter(medVal < 0)

ggplot(plotTab, aes(x=drugConc, y=CI, fill = concStep)) +
  ggbeeswarm::geom_quasirandom(shape = 21, alpha =0.5) +
  stat_summary(fun.y = median, fun.ymin = median, fun.ymax = median, color = "darkred",
          geom = "crossbar", width = 0.5) + 
  coord_cartesian(ylim=c(-0.5,0.5)) + 
  geom_hline(yintercept = 0, linetype = "dashed") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) 

Summarise CI

Calculate synergistic and antagonistic effect separately, using a similar way as bayesyngergy package

sumSyn <- function(viabExp, viabObs) {
  tab <- tibble(viabExp=viabExp, viabObs = viabObs) %>%
    mutate(syn = min(0, viabObs - viabExp),
           anta = max(0, viabObs - viabExp))
  return(tibble(syn = sum(tab$syn,na.rm = TRUE), anta = sum(tab$anta,na.rm = TRUE)))
}

ciTabSum <- group_by(synTab, plateID, Drug) %>% nest() %>%
  mutate(res = map(data, ~sumSyn(.$viabExp, .$viabObs))) %>%
  unnest(res) %>% select(-data)

Visualization of synergistic and antagoistic effect

plotSynScatter <- function(plotTab, labelPercent = 0.05) {
  
  synCut <-  quantile(plotTab$syn, labelPercent)
  antaCut <- quantile(plotTab$anta, 1-labelPercent)
  
  plotTabSyn <- plotTab %>% mutate(labelText = ifelse(syn < synCut, plateID,""), type = "Synergistic effect") %>%
    mutate(score = syn)
  plotTabAnta <- plotTab %>% mutate(labelText = ifelse(anta > antaCut, plateID,""), type = "Antagonistic effect") %>%
    mutate(score = anta)
  plotComb <- bind_rows(plotTabSyn, plotTabAnta)
  
  p <- ggplot(plotComb, aes(x=Drug, y=score, label = labelText)) +
    geom_point(aes(col= type), alpha=0.5) + ggrepel::geom_text_repel(max.overlaps = Inf) +
    theme_bw() +
    theme(axis.text.x = element_text(angle = 90, hjust=1, vjust = 0.5)) +
    scale_color_manual(values = c("Synergistic effect" = "red", "Antagonistic effect" = "blue")) +
    #facet_wrap(~type, ncol=2)
    ylab("Combination Score") + xlab("") +
    theme(legend.position = "bottom")
  return(p)
}

Scatter plot

Top 1% synergistics or antagonistic effect are labelled.

plotSynScatter(ciTabSum,0.01)

Matrix visualization

plotSynMatrix <- function(ciTabSum, cut1 = 0.1, cut2 = 0.2) {
  synCut1 <-  quantile(ciTabSum$syn, cut1)
  antaCut1 <- quantile(ciTabSum$anta, 1-cut1)
  synCut2 <-  quantile(ciTabSum$syn, cut2)
  antaCut2 <- quantile(ciTabSum$anta, 1-cut2)

  synOrder <- hcOrder(ciTabSum$Drug, ciTabSum$plateID, ciTabSum$syn)
  antaOrder <- hcOrder(ciTabSum$Drug, ciTabSum$plateID, ciTabSum$anta)

  plotTabSyn <- ciTabSum %>% mutate(degree = case_when(
    syn <= synCut1 ~ "**",
    syn <= synCut2 ~ "*",
    TRUE ~ ""
  )) %>% mutate(Drug = factor(Drug, levels = synOrder$row),
                plateID = factor(plateID, levels = synOrder$col))

  plotTabAnta <- ciTabSum %>% mutate(degree = case_when(
    anta >= antaCut1 ~ "**",
    anta >= antaCut2 ~ "*",
    TRUE ~ ""
  )) %>% mutate(Drug = factor(Drug, levels = antaOrder$row),
                plateID = factor(plateID, levels = antaOrder$col))

  p1 <- ggplot(plotTabSyn, aes(x=Drug, y=plateID, label = degree)) +
    geom_tile(aes(fill = syn)) +
    scale_fill_gradient(low="red", high="white", name = "syngergy") +
    geom_text() + ggtitle("Synergistic effect") +
    theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5))

  p2 <- ggplot(plotTabAnta, aes(x=Drug, y=plateID, label = degree)) +
    geom_tile(aes(fill = anta)) +
    scale_fill_gradient(low="white", high="blue", name = "antagonism") +
    geom_text() + ggtitle("Antagonistic effect") +
    theme(axis.text.x = element_text(angle = 90, hjust=1, vjust=0.5))

  p <- cowplot::plot_grid(p2, p1, ncol=2)
  return(p)
}
plotSynMatrix(ciTabSum, 0.01, 0.05)

one star indicates top 5% synergy or antagonism, two stars indicate top 1% synergy or antagonism

Plot combination curve for each drug, witin each drug, cell models are ranked based on CI

drugs <- sort(unique(synTab$Drug))

pList <- lapply(drugs, function(eachDrug) {
  ciRank <- filter(ciTabSum, Drug==eachDrug) %>%
    arrange(syn)
  
  plotTab <- filter(synTab, Drug == eachDrug) %>%
    select(plateID, Drug, conc, viabDrug, viabCar, viabExp, viabObs) %>%
    pivot_longer(-c("plateID","Drug","conc"), names_to = "type", values_to = "viab") %>%
    mutate(plateID = factor(plateID, levels = ciRank$plateID)) %>%
    mutate(type = factor(type, levels = c("viabDrug","viabCar","viabExp","viabObs")))
  
  ggplot(plotTab, aes(x=factor(conc), y=viab, group=type)) +
    geom_line(aes(col = type)) +
    facet_wrap(~plateID,ncol=5) +
    #scale_linetype_manual(values = c(combine = "solid", `single` = "dotted"), name = "combination") +
    scale_color_manual(values =c(viabDrug = "orange", viabCar="darkgreen",
                                 viabExp = "red", viabObs="blue"),
                       labels=c("drug only ","Car only","expected effect","observed effect"),
                       name = "treatment") + 
    ggtitle(eachDrug) +
    ylab("Viability") + xlab("Concentration")
})
jyluMisc::makepdf(pList, "../docs/combo_effect_noToxic.pdf",nrow = 1, ncol = 1, height = 18, width = 12)

combo_effect_noToxic.pdf

Testing for significant synergies using paired t-test and consider donors as replicates

Test For each individual concentration

testTab <- synTab %>%
  left_join(distinct(screenData, plateID, cell, time, construct, donor), by = "plateID") %>%
  mutate(cellTimeConst = paste0(cell,"_",time,"_",construct)) 

resTab <- group_by(testTab, cell, time, construct, Drug, conc, cellTimeConst) %>% nest() %>%
  mutate(m = map(data, ~t.test(.$viabObs, .$viabExp, paired=TRUE))) %>%
  mutate(res = map(m, broom::tidy)) %>%
  unnest(res) %>%
  select(Drug, conc, cell, time, construct, cellTimeConst, estimate, p.value) %>%
  arrange(p.value) %>% ungroup() %>%
  mutate(p.adj = p.adjust(p.value, method ="BH"))

P-value heatmap for summarising the results

24 hours

Heatmaps
resSub <- filter(resTab, time == "24h") 

pList <- lapply(unique(resSub$Drug), function(dd) {
  plotTab <- filter(resSub, Drug == dd) %>% 
    mutate(effect = ifelse(estimate >0, "antagonisim","synergy"),
           ifSig = case_when(p.value <= 0.01 & p.adj > 0.1 ~ "*",
                             p.adj <= 0.1 ~ "**",
                             p.value > 0.01 ~ "")) %>%
    arrange(construct,cellTimeConst) %>%
    mutate(cellTimeConst = factor(cellTimeConst, levels = unique(cellTimeConst)))
  
  pHeat <- ggplot(plotTab, aes(x=factor(conc),y=cellTimeConst, fill = estimate)) +
    geom_tile() + 
    geom_text(aes(label = ifSig), vjust =0.5) +
    scale_x_discrete(expand = c(0,0)) + scale_y_discrete(expand = c(0,0)) +
    scale_fill_gradient2(low ="red",high="blue",mid="white", midpoint = 0, name = "CI") +
    theme_minimal() +
    ggtitle(dd) +theme(plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
                       axis.text.x = element_blank(), panel.grid = element_blank(),
                       axis.title.x = element_blank()) +
    ylab("")

  
  pBox <- ggplot(plotTab, aes(x=factor(conc), y=estimate)) +
    geom_point(shape =1,size=2) +
    stat_summary(fun.y = median, fun.ymin = median, fun.ymax = median, color = "darkred",
                 geom = "crossbar", width = 0.5) +
    geom_hline(yintercept = 0, linetype = "dashed") +
    ylab("Average CI") + xlab("Concentration")+
    theme_bw()
  
  cowplot::plot_grid(pHeat, pBox, align = "v", axis ="lr",ncol=1, rel_heights = c(1,0.6))
})

cowplot::plot_grid(plotlist = pList, ncol=4)

one star indicates P value < 0.01, two starts indicate FDR < 10%
negative CI indicates synergy, positive CI indicates antagonism
The plot below the heatmap shows the median CI for each concentration

48 hours

Heatmaps
resSub <- filter(resTab, time == "48h") 

pList <- lapply(unique(resSub$Drug), function(dd) {
  plotTab <- filter(resSub, Drug == dd) %>% 
    mutate(effect = ifelse(estimate >0, "antagonisim","synergy"),
           ifSig = case_when(p.value <= 0.01 & p.adj > 0.1 ~ "*",
                             p.adj <= 0.1 ~ "**",
                             p.value > 0.01 ~ "")) %>%
    arrange(construct,cellTimeConst) %>%
    mutate(cellTimeConst = factor(cellTimeConst, levels = unique(cellTimeConst)))
  
  pHeat <- ggplot(plotTab, aes(x=factor(conc),y=cellTimeConst, fill = estimate)) +
    geom_tile() + 
    geom_text(aes(label = ifSig), vjust =0.5) +
    scale_x_discrete(expand = c(0,0)) + scale_y_discrete(expand = c(0,0)) +
    scale_fill_gradient2(low ="red",high="blue",mid="white", midpoint = 0, name = "CI") +
    theme_minimal() +
    ggtitle(dd) +theme(plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
                       axis.text.x = element_blank(), panel.grid = element_blank(),
                       axis.title.x = element_blank()) +
    ylab("")

  
  pBox <- ggplot(plotTab, aes(x=factor(conc), y=estimate)) +
    geom_point(shape =1,size=2) +
    stat_summary(fun.y = median, fun.ymin = median, fun.ymax = median, color = "darkred",
                 geom = "crossbar", width = 0.5) +
    geom_hline(yintercept = 0, linetype = "dashed") +
    ylab("Average CI") + xlab("Concentration")+
    theme_bw()
  
  cowplot::plot_grid(pHeat, pBox, align = "v", axis ="lr",ncol=1, rel_heights = c(1,0.6))
})

cowplot::plot_grid(plotlist = pList, ncol=4)

Test for summarised effect across concentrations (AUC)

testTab <- synTab %>%
  left_join(distinct(screenData, plateID, cell, time, construct, donor), by = "plateID") %>%
  mutate(cellTimeConst = paste0(cell,"_",time,"_",construct)) %>%
  group_by(Drug, cellTimeConst, donor) %>%
  summarise(viabObs = calcAUC(viabObs, conc),
            viabExp = calcAUC(viabExp, conc))

resTab <- group_by(testTab, Drug, cellTimeConst) %>% nest() %>%
  mutate(m = map(data, ~t.test(.$viabObs, .$viabExp, paired=TRUE))) %>%
  mutate(res = map(m, broom::tidy)) %>%
  unnest(res) %>%
  select(Drug, cellTimeConst, estimate, p.value) %>%
  arrange(p.value) %>% ungroup() %>%
  mutate(p.adj = p.adjust(p.value, method ="BH"))

P-value heatmap for summarising the results

plotTab <- resTab %>% 
  mutate(effect = ifelse(estimate >0, "antagonism","synergy"),
         ifSig = case_when(p.value <= 0.01 & p.adj > 0.1 ~ "*",
                           p.adj <= 0.1 ~ "**",
                           p.value > 0.01 ~ ""))

ggplot(plotTab, aes(x=Drug ,y=cellTimeConst, fill = estimate)) +
  geom_tile() + 
  geom_text(aes(label = ifSig), vjust =0.5) +
  scale_fill_gradient2(low ="red",high="blue",mid="white", midpoint = 0, name = "effect size") +
  theme(axis.text.x = element_text(angle = 90, hjust=1, vjust = 0.5))

one star indicates P value < 0.01, two starts indicate FDR < 10%
negative CI indicates synergy, positive CI indicates antagonism

Volcano plot

plotTab <- resTab %>% 
  mutate(effect = ifelse(p.value <= 0.05,
                         ifelse(estimate > 0, "antagonism","synergy"),
                         "n.s.")) %>%
  mutate(labText = cellTimeConst)

ggplot(plotTab, aes(x=estimate ,y=-log10(p.value), color = effect)) +
  geom_point() +
  ggrepel::geom_text_repel(data = filter(plotTab, p.value <=0.05, estimate <0), aes(label = labText)) +
  scale_color_manual(values = c(synergy = "red", antagonism = "blue", "n.s." = "grey50")) +
  theme_bw() +
  xlab("average CI") +
  facet_wrap(~Drug)

Synergy with P-value < 0.05 are colored

Line plots for significant pairs (P-value < 0.01)

resTab.sig <- filter(plotTab, estimate < 0, p.value < 0.01)

pList <- lapply(seq(nrow(resTab.sig)), function(i) {
  rec <- resTab.sig[i,]
  eachTab <- filter(testTab, Drug == rec$Drug, cellTimeConst == rec$cellTimeConst) %>%
    pivot_longer(c("viabObs","viabExp"), names_to = "type", values_to = "value") %>%
    mutate(type = ifelse(type == "viabObs", "observed","expected"))
  ggplot(eachTab, aes(x=type, y=value, col = donor)) + 
    geom_point() + 
    geom_line(aes(group =donor, col = donor)) +
    xlab("") + ylab("Viability") +
    ggtitle(sprintf("%s in %s", rec$Drug, rec$cellTimeConst)) +
    theme(legend.position = "bottom")
})

cowplot::plot_grid(plotlist = pList, ncol=3)


sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur/Monterey 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gridExtra_2.3   forcats_0.5.1   stringr_1.4.1   dplyr_1.0.9    
 [5] purrr_0.3.4     readr_2.1.2     tidyr_1.2.0     tibble_3.1.8   
 [9] ggplot2_3.4.1   tidyverse_1.3.2 readxl_1.4.0   

loaded via a namespace (and not attached):
  [1] backports_1.4.1             fastmatch_1.1-3            
  [3] drc_3.0-1                   jyluMisc_0.1.5             
  [5] workflowr_1.7.0             igraph_1.3.4               
  [7] shinydashboard_0.7.2        splines_4.2.0              
  [9] BiocParallel_1.30.3         GenomeInfoDb_1.32.2        
 [11] TH.data_1.1-1               digest_0.6.30              
 [13] htmltools_0.5.4             fansi_1.0.3                
 [15] magrittr_2.0.3              googlesheets4_1.0.0        
 [17] cluster_2.1.3               tzdb_0.3.0                 
 [19] limma_3.52.2                modelr_0.1.8               
 [21] matrixStats_0.62.0          sandwich_3.0-2             
 [23] piano_2.12.0                colorspace_2.0-3           
 [25] rvest_1.0.2                 ggrepel_0.9.1              
 [27] haven_2.5.0                 xfun_0.31                  
 [29] crayon_1.5.2                RCurl_1.98-1.7             
 [31] jsonlite_1.8.3              survival_3.4-0             
 [33] zoo_1.8-10                  glue_1.6.2                 
 [35] survminer_0.4.9             gtable_0.3.0               
 [37] gargle_1.2.0                zlibbioc_1.42.0            
 [39] XVector_0.36.0              DelayedArray_0.22.0        
 [41] car_3.1-0                   BiocGenerics_0.42.0        
 [43] abind_1.4-5                 scales_1.2.0               
 [45] mvtnorm_1.1-3               DBI_1.1.3                  
 [47] relations_0.6-12            rstatix_0.7.0              
 [49] Rcpp_1.0.9                  plotrix_3.8-2              
 [51] xtable_1.8-4                km.ci_0.5-6                
 [53] stats4_4.2.0                DT_0.23                    
 [55] htmlwidgets_1.5.4           httr_1.4.3                 
 [57] fgsea_1.22.0                gplots_3.1.3               
 [59] ellipsis_0.3.2              pkgconfig_2.0.3            
 [61] farver_2.1.1                sass_0.4.2                 
 [63] dbplyr_2.2.1                utf8_1.2.2                 
 [65] tidyselect_1.1.2            labeling_0.4.2             
 [67] rlang_1.0.6                 later_1.3.0                
 [69] visNetwork_2.1.0            munsell_0.5.0              
 [71] cellranger_1.1.0            tools_4.2.0                
 [73] cachem_1.0.6                cli_3.4.1                  
 [75] generics_0.1.3              broom_1.0.0                
 [77] evaluate_0.15               fastmap_1.1.0              
 [79] yaml_2.3.5                  knitr_1.39                 
 [81] fs_1.5.2                    survMisc_0.5.6             
 [83] caTools_1.18.2              mime_0.12                  
 [85] slam_0.1-50                 xml2_1.3.3                 
 [87] compiler_4.2.0              rstudioapi_0.13            
 [89] beeswarm_0.4.0              ggsignif_0.6.3             
 [91] marray_1.74.0               reprex_2.0.1               
 [93] bslib_0.4.1                 stringi_1.7.8              
 [95] highr_0.9                   lattice_0.20-45            
 [97] Matrix_1.5-4                KMsurv_0.1-5               
 [99] shinyjs_2.1.0               vctrs_0.5.2                
[101] pillar_1.8.0                lifecycle_1.0.3            
[103] jquerylib_0.1.4             data.table_1.14.8          
[105] cowplot_1.1.1               bitops_1.0-7               
[107] httpuv_1.6.6                GenomicRanges_1.48.0       
[109] R6_2.5.1                    promises_1.2.0.1           
[111] KernSmooth_2.23-20          vipor_0.4.5                
[113] IRanges_2.30.0              codetools_0.2-18           
[115] MASS_7.3-58                 gtools_3.9.3               
[117] exactRankTests_0.8-35       assertthat_0.2.1           
[119] SummarizedExperiment_1.26.1 rprojroot_2.0.3            
[121] withr_2.5.0                 multcomp_1.4-19            
[123] S4Vectors_0.34.0            GenomeInfoDbData_1.2.8     
[125] parallel_4.2.0              hms_1.1.1                  
[127] grid_4.2.0                  rmarkdown_2.14             
[129] MatrixGenerics_1.8.1        carData_3.0-5              
[131] googledrive_2.0.0           ggpubr_0.4.0               
[133] git2r_0.30.1                maxstat_0.7-25             
[135] sets_1.0-21                 Biobase_2.56.0             
[137] shiny_1.7.4                 lubridate_1.8.0            
[139] ggbeeswarm_0.6.0