Last updated: 2022-01-11

Checks: 6 1

Knit directory: DepInfeR/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211005) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 43be8a7. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/analysis_RNAseq_cache/
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  analysis/analysis_EMBL2016.Rmd
    Untracked:  analysis/analysis_GDSC.Rmd
    Untracked:  analysis/analysis_RNAseq.Rmd
    Untracked:  analysis/analysis_beatAML.Rmd
    Untracked:  analysis/process_EMBL2016.Rmd
    Untracked:  analysis/process_GDSC.Rmd
    Untracked:  analysis/process_beatAML.Rmd
    Untracked:  analysis/process_kinobeads.Rmd
    Untracked:  code/utils.R
    Untracked:  data/BeatAML/
    Untracked:  data/EMBL2016/
    Untracked:  data/GDSC/
    Untracked:  data/Kinobeads/
    Untracked:  data/RNAseq/
    Untracked:  manuscript/
    Untracked:  output/BeatAML_result.RData
    Untracked:  output/EMBL_result.RData
    Untracked:  output/EMBL_resultSub.RData
    Untracked:  output/GDSC_result.RData
    Untracked:  output/allTargets.rds
    Untracked:  output/inputs_BeatAML.RData
    Untracked:  output/inputs_EMBL.RData
    Untracked:  output/inputs_GDSC.RData

Unstaged changes:
    Modified:   README.md
    Modified:   _workflowr.yml
    Modified:   analysis/_site.yml
    Deleted:    analysis/about.Rmd
    Modified:   analysis/index.Rmd
    Deleted:    analysis/license.Rmd
    Deleted:    output/README.md

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Load packages

Packages

library(DepInfeR)
library(RColorBrewer)
library(pheatmap)
library(ggbeeswarm)
library(ggrepel)
library(tidyverse)
source("../code/utils.R")
knitr::opts_chunk$set(dev = c("png","pdf"))

Load pre-processed datasets

load("../output/inputs_GDSC.RData")

Dimensions of input matrices

Drug-target

dim(tarMat_GDSC)
[1]  66 118

Drug-sample (viability matrix)

dim(viabMat_GDSC)
[1]  66 126

Multivariant model for protein dependence prediction

Perform multivariant LASSO regression based on a drug-protein affinity matrix and a drug response matrix.
This chunk can take a long time to run. Therefore we will save the result for later use to save time.

set.seed(333)
result <- runLASSOregression(TargetMatrix = tarMat_GDSC, ResponseMatrix = viabMat_GDSC)

#remove targets that were never selected
useTar <- rowSums(result$coefMat) != 0
result$coefMat <- result$coefMat[useTar,]


#save intermediate results
save(result, file = "../output/GDSC_result.RData")

Load the saved result

load("../output/GDSC_result.RData")

Number of selected targets

nrow(result$coefMat)
[1] 9

Heatmap plots of protein dependence matrix

The protein dependence matrix can be nicely visualized in a heatmap. High positive coefficients imply strong reliance of a certain sample on this protein for survival. Proteins with coefficients close to zero are less essential for the cell’s survival. Negative coefficients indicate that the viability phenotype benefits from inhibition of the protein.

Heatmap of protein dependence coefficients

annoColor <- list(H2O2 = c(`-1` = "red", `0` = "black", `1` = "green"),
                  IL.1 = c(`-1` = "red", `0` = "black", `1` = "green"),
                  JAK.STAT = c(`-1` = "red", `0` = "black", `1` = "green"),
                  MAPK.only = c(`-1` = "red", `0` = "black", `1` = "green"),
                  MAPK.PI3K = c(`-1` = "red", `0` = "black"),
                  TLR = c( `-1` = "red", `0` = "black", `1` = "green"),
                  Wnt = c(`-1` = "red", `0` = "black", `1` = "green"),
                  VEGF = c(`-1` = "red", `0` = "black", `1` = "green"),
                  PI3K.only = c(`-1` = "red", `0` = "black", `1` = "green"),
                  TCGA.classification = c(ALL="#BC3C29FF",AML="#E18727FF",DLBC="#20854EFF","BRCAHer-"="#0072B5FF",'BRCAHer+'="#7876B1FF"),
                  ARID1A_mut = c(`1` = "black",`0` = "grey80"),
                  EP300_mut = c(`1` = "black",`0` = "grey80"),
                  PTEN_mut = c(`1` = "black",`0` = "grey80"),
                  TP53_mut = c(`1` = "black",`0` = "grey80"),
                  PIK3CA_mut = c(`1` = "black",`0` = "grey80"),
                  BRCA2_mut = c(`1` = "black",`0` = "grey80"),
                  BRCA1_mut = c(`1` = "black",`0` = "grey80"),
                  CDH1_mut = c(`1` = "black",`0` = "grey80"),
                  FBXW7_mut = c(`1` = "black",`0` = "grey80"),
                  NRAS_mut = c(`1` = "black",`0` = "grey80"),
                  ASXL1_mut = c(`1` = "black",`0` = "grey80"),
                  MLL2_mut = c(`1` = "black",`0` = "grey80"),
                  ABL1_trans = c(`1` = "black",`0` = "grey80"),
                  missing_value_perc = c(`0` = "white",`25` = "red")
)

plotTab <- result$coefMat
#Row normalization while keeping sign
plotTab_scaled <- scale(t(plotTab), center = FALSE, scale= TRUE)
plotTab <- t(plotTab_scaled)
levels(mutation_GDSC$TCGA.classification) <- c(levels(mutation_GDSC$TCGA.classification), "BRCAHer-")
mutation_GDSC$TCGA.classification[mutation_GDSC$TCGA.classification=="BRCA"] <- "BRCAHer-"
mutation_GDSC$TCGA.classification <- factor(mutation_GDSC$TCGA.classification, levels = c("ALL", "AML", "DLBC", "BRCAHer-", "BRCAHer+"))
mutation_GDSC$missing_value_perc <- NULL

pheatmap(plotTab, 
         color=colorRampPalette(rev(brewer.pal(n = 7, name = "RdBu")), bias= 1.8)(100),
         annotation_col = mutation_GDSC,
         annotation_colors = annoColor,
         clustering_method = "ward.D2", scale = "none", 
         show_colnames = TRUE, main = "", fontsize = 9, fontsize_row = 10, fontsize_col = 7)

Differential dependence on proteins associated with cancer types and genotypes

Prepare genomic background table

cell_anno_final <- mutation_GDSC %>%
  #dplyr::select(-missing_value_perc) %>% 
  dplyr::rename(cancer_type = TCGA.classification) %>% 
  dplyr::filter(rownames(mutation_GDSC) %in% colnames(result$coefMat))
colnames(cell_anno_final) <- str_remove_all(colnames(cell_anno_final),"_mut")
colnames(cell_anno_final) <- str_replace_all(colnames(cell_anno_final),"_trans","_translocation")

Association test between protein dependence and cancer type or mutational background

testRes <-  diffImportance(result$coefMat, cell_anno_final)

Visualize protein associations with cancer type

CancerType <- testRes %>% dplyr::filter(mutName == "cancer_type") %>% dplyr::filter(p.adj < 0.05, FC > 0.1)
plotTab <- t(scale(t(result$coefMat))) %>% data.frame() %>%
  rownames_to_column("target") %>% gather(key = "CellLine", value = "coef",-target) %>% mutate(Cancer_Type = mutation_GDSC[CellLine,]$TCGA.classification) %>%
  group_by(target, Cancer_Type) %>% mutate(meanCoef = mean(coef)) %>% arrange(meanCoef) %>% ungroup() %>%
  mutate(target = factor(target, levels = unique(target))) 


plotTab <- plotTab %>% dplyr::filter(target %in% CancerType$targetName)
plotTab$Cancer_Type <- factor(plotTab$Cancer_Type, levels = c("ALL", "AML","DLBC", "BRCAHer-", "BRCAHer+"))

ggplot(plotTab, aes(x = target, y = coef, group=Cancer_Type)) +
 geom_jitter(
  aes(color = Cancer_Type), 
  position = position_jitterdodge(jitter.width = 0.2, dodge.width = 0.8),
  size = 1.2
  ) +
  stat_summary(
    fun= mean, fun.min=mean, fun.max=mean, colour="grey25",
    geom = "crossbar",  size = 0.8,
    position = position_dodge(0.8)
    ) +
  scale_color_manual(values= c("#BC3C29FF","#E18727FF","#20854EFF","#0072B5FF","#7876B1FF"),
                     guide = guide_legend(override.aes = list(size = 3) )) +
  ggtitle("Protein dependence associated with cancer type") + ylab("Protein dependence coefficient") + xlab("Protein") + theme_bw() + 
  theme_custom + geom_vline(xintercept =seq(from = 1.5, to = 8.5, by = 1), color="darkgrey") + labs(color = "Cancer Type")

Radar plot visualization

starMatrix <- plotTab  %>% dplyr::select(target, Cancer_Type, meanCoef)  %>% distinct()
starMatrix <- starMatrix %>% pivot_wider(names_from = target, values_from = meanCoef) 
starMatrix <- starMatrix %>% mutate(Cancer_Type =  factor(Cancer_Type, levels = c("ALL", "AML","DLBC", "BRCAHer-", "BRCAHer+"))) %>% arrange(Cancer_Type) 
starMatrix <- starMatrix %>% column_to_rownames("Cancer_Type")
starMatrix_norm <- (as.matrix(starMatrix) + abs(min(starMatrix)))
zeroValue <-abs(min(starMatrix)) / max(starMatrix_norm)
starMatrix_norm <- starMatrix_norm/ max(starMatrix_norm)


#function for a single star plot
starPlot <- function(dataIn, sampleName,zeroVal, color='red') {
    stopifnot(is.matrix(dataIn) & nrow(dataIn) == 1)
    
    #data for outer ring
    outer <- dataIn
    outer[!is.na(outer)] <- 1
    
    #data for inner ring
    inner <- dataIn
    inner[!is.na(inner)] <- zeroVal
    
    #plotting
    stars(outer, draw.segments = FALSE, scale=FALSE, full=TRUE, locations=c(1,1), mar = c(4,4,4,4), main=sampleName, cex=0.5) #plot the outter ring
    stars(inner, draw.segments = FALSE, scale=FALSE, full=TRUE, locations=c(1,1), lty =2 ,add=TRUE) #plot the inner ring
    stars(dataIn, col.stars=color, draw.segments = FALSE, scale=FALSE, full=TRUE, key.loc = c(1,1), key.labels = colnames(dataIn), location=c(1,1), add=TRUE,cex=1) #plot the actual data
}

starColor <- c("#BC3C29FF","#E18727FF","#20854EFF","#0072B5FF","#7876B1FF") #define color scheme

par(mfrow=c(2,3))  #layout in 3 X 3 format
for (i in seq(1,nrow(starMatrix_norm))) {
  dataIn <- starMatrix_norm[i, ,drop=FALSE]
  sampleName <- rownames(starMatrix_norm)[i]
  starCol <- starColor[i]
  starPlot(dataIn,sampleName,zeroValue, starCol)
}  

Visualize significant associations between protein dependence and mutational background

colList2 <- c(`not significant` = "grey80", mutated = "#BC3C29FF", unmutated = "#0072B5FF")

pos = position_jitter(width = 0.15, seed = 10)

plotTab <- testRes %>% dplyr::filter(mutName != "cancer_type") %>% mutate(type = ifelse(p.adj > 0.1, "not significant", 
                                          ifelse(FC >0, "mutated","unmutated"))) %>%
  mutate(varName = ifelse(type == "not significant","",targetName)) %>%
  mutate(p.adj = ifelse(p.adj <1e-5, 1e-5,p.adj))

#subset for mutation with at least one significant associations
plotMut <- unique(filter(testRes, p.adj <= 0.1)$mutName)

plotTab <- plotTab %>% dplyr::filter(mutName %in% plotMut) 
plotTab$type <- factor(plotTab$type, levels = c("mutated", "unmutated", "not significant"))

p <- ggplot(data=plotTab, aes(x= mutName, y=-log10(p.adj),
                              col=type, label = varName))+ 
  geom_text_repel(position = pos, color = "black", size= 6, force = 3) +
  geom_hline(yintercept = -log10(0.1), linetype="dotted", color = "grey20") + 
  geom_point(size=3, position = pos) + 
  ylab(expression(-log[10]*'('*adjusted~italic("P")~value*')')) + xlab("Mutation") +
  scale_color_manual(values = colList2) + 
  scale_y_continuous(trans = "exp", limits = c(0,2.5), breaks = c(0,1,1.5,2)) + 
  theme_custom +
  #annotate(geom = "text", x = 0.5, y = -log10(0.1) - 0.25, label = "10% FDR", size=7, col = "grey20") +
  coord_flip()  + labs(col = "Higher dependence in")  +
  theme(legend.position = c(0.80,0.2),
        legend.background = element_rect(fill = NA),
        legend.text = element_text(size=14),
        legend.title = element_text(size=16),
        axis.title = element_text(size=18),
        axis.text = element_text(size=18))
plot(p)

#ggsave("test.pdf",height = 4, width = 8)

Visualize significant associations using a heatmap

plotTab <- testRes %>% dplyr::filter(mutName != "cancer_type") %>% 
  mutate(starSign = ifelse(p.adj <=0.1, "*", ""),
         pSign = -log10(p)*sign(FC))

#subset for mutation with at least one significant associations
plotTar <- unique(filter(plotTab, p.adj <= 0.1)$targetName)
plotMut <- unique(filter(plotTab, p.adj <= 0.1)$mutName)
plotTab <- plotTab %>% dplyr::filter( targetName %in% plotTar , mutName %in% plotMut) 


p <- ggplot(data=plotTab, aes(y=mutName, x = targetName, fill=pSign)) +
  geom_tile(col = "black") + geom_text(aes(label = starSign), size=5, vjust=0.5) +
  scale_fill_gradient2(low = "#BC3C29FF", high = "#0072B5FF", name = bquote(-log[10]*italic("P"))) +
  theme_minimal() +
  theme(panel.grid.major = element_blank(),
        legend.text = element_text(size=14),
        legend.title = element_text(size=16),
        axis.title = element_text(size=18),
        axis.text = element_text(size=18)) +
  ylab("Mutations") + xlab("Proteins")

p

Visualization of exemplary association between NRAS mutation status and MAP2K2 dependence visualized in a beeswarm plot

pList <- plotDiffBox(testRes, result$coefMat, cell_anno_final, 0.05)
pList$MAP2K2_NRAS


sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] forcats_0.5.1      stringr_1.4.0      dplyr_1.0.7        purrr_0.3.4       
 [5] readr_2.1.1        tidyr_1.1.4        tibble_3.1.6       tidyverse_1.3.1   
 [9] ggrepel_0.9.1      ggbeeswarm_0.6.0   ggplot2_3.3.5      pheatmap_1.0.12   
[13] RColorBrewer_1.1-2 DepInfeR_0.1.0    

loaded via a namespace (and not attached):
 [1] matrixStats_0.61.0 fs_1.5.2           lubridate_1.8.0    doParallel_1.0.16 
 [5] httr_1.4.2         rprojroot_2.0.2    tools_4.1.2        backports_1.4.1   
 [9] doRNG_1.8.2        bslib_0.3.1        utf8_1.2.2         R6_2.5.1          
[13] vipor_0.4.5        DBI_1.1.2          colorspace_2.0-2   withr_2.4.3       
[17] tidyselect_1.1.1   compiler_4.1.2     git2r_0.29.0       glmnet_4.1-3      
[21] cli_3.1.0          rvest_1.0.2        xml2_1.3.3         labeling_0.4.2    
[25] sass_0.4.0         scales_1.1.1       digest_0.6.29      rmarkdown_2.11    
[29] pkgconfig_2.0.3    htmltools_0.5.2    highr_0.9          dbplyr_2.1.1      
[33] fastmap_1.1.0      rlang_0.4.12       readxl_1.3.1       rstudioapi_0.13   
[37] farver_2.1.0       shape_1.4.6        jquerylib_0.1.4    generics_0.1.1    
[41] jsonlite_1.7.2     magrittr_2.0.1     rlist_0.4.6.2      Matrix_1.4-0      
[45] Rcpp_1.0.7         munsell_0.5.0      fansi_0.5.0        lifecycle_1.0.1   
[49] stringi_1.7.6      yaml_2.2.1         grid_4.1.2         parallel_4.1.2    
[53] promises_1.2.0.1   crayon_1.4.2       lattice_0.20-45    haven_2.4.3       
[57] splines_4.1.2      hms_1.1.1          knitr_1.37         pillar_1.6.4      
[61] rngtools_1.5.2     codetools_0.2-18   reprex_2.0.1       glue_1.6.0        
[65] evaluate_0.14      data.table_1.14.2  modelr_0.1.8       vctrs_0.3.8       
[69] tzdb_0.2.0         httpuv_1.6.4       foreach_1.5.1      cellranger_1.1.0  
[73] gtable_0.3.0       assertthat_0.2.1   xfun_0.29          broom_0.7.10      
[77] later_1.3.0        survival_3.2-13    iterators_1.0.13   beeswarm_0.4.0    
[81] workflowr_1.7.0    ellipsis_0.3.2