Last updated: 2022-05-17

Checks: 5 2

Knit directory: EMBL2016/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210512) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

The following chunks had caches available:
  • unnamed-chunk-27

To ensure reproducibility of the results, delete the cache directory CDK_analysis_cache and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE when running wflow_build() or wflow_publish().

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 12d1722. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/CDK_analysis_cache/
    Ignored:    analysis/boxplot_AUC.png
    Ignored:    analysis/consensus_clustering_CPS_cache/
    Ignored:    analysis/consensus_clustering_noFit_cache/
    Ignored:    analysis/dose_curve.png
    Ignored:    analysis/targetDist.png
    Ignored:    analysis/toxivity_box.png
    Ignored:    analysis/volcano.png
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  analysis/AUC_CLL_IC50/
    Untracked:  analysis/BRAF_analysis.Rmd
    Untracked:  analysis/CDK_analysis.Rmd
    Untracked:  analysis/GSVA_analysis.Rmd
    Untracked:  analysis/NOTCH1_signature.Rmd
    Untracked:  analysis/autoluminescence.Rmd
    Untracked:  analysis/bar_plot_mixed.pdf
    Untracked:  analysis/bar_plot_mixed_noU1.pdf
    Untracked:  analysis/beatAML/
    Untracked:  analysis/cohortComposition_CLLsamples.pdf
    Untracked:  analysis/cohortComposition_allSamples.pdf
    Untracked:  analysis/consensus_clustering.Rmd
    Untracked:  analysis/consensus_clustering_CPS.Rmd
    Untracked:  analysis/consensus_clustering_IC50.Rmd
    Untracked:  analysis/consensus_clustering_beatAML.Rmd
    Untracked:  analysis/consensus_clustering_noFit.Rmd
    Untracked:  analysis/consensus_clusters.pdf
    Untracked:  analysis/disease_specific.Rmd
    Untracked:  analysis/dose_curve_selected.pdf
    Untracked:  analysis/genomic_association.Rmd
    Untracked:  analysis/genomic_association_allDisease.Rmd
    Untracked:  analysis/mean_autoluminescence_val.csv
    Untracked:  analysis/mean_autoluminescence_val.xlsx
    Untracked:  analysis/noFit_CLL/
    Untracked:  analysis/number_associations.pdf
    Untracked:  analysis/overview.Rmd
    Untracked:  analysis/plotCohort.Rmd
    Untracked:  analysis/preprocess.Rmd
    Untracked:  analysis/volcano_noBlocking.pdf
    Untracked:  code/utils.R
    Untracked:  data/BeatAML_Waves1_2/
    Untracked:  data/ic50Tab.RData
    Untracked:  data/newEMBL_20210806.RData
    Untracked:  data/patMeta.RData
    Untracked:  data/targetAnnotation_all.csv
    Untracked:  force_sync.sh
    Untracked:  output/gene_associations/
    Untracked:  output/resConsClust.RData
    Untracked:  output/resConsClust_aucFit.RData
    Untracked:  output/resConsClust_beatAML.RData
    Untracked:  output/resConsClust_cps.RData
    Untracked:  output/resConsClust_ic50.RData
    Untracked:  output/resConsClust_noFit.RData
    Untracked:  output/screenData.RData
    Untracked:  sync.sh

Unstaged changes:
    Modified:   _workflowr.yml
    Modified:   analysis/_site.yml
    Deleted:    analysis/about.Rmd
    Modified:   analysis/index.Rmd
    Deleted:    analysis/license.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Load packages and datasets

library(jyluMisc)
library(tidyverse)

knitr::opts_chunk$set(warning = FALSE, message = FALSE)
#processed screen data
load("../output/screenData.RData")
#patient annotation
load("../data/patMeta.RData")

Summarise the trend of CDKi responses

Choose the drugs selected by Jarno

drugList <- c("Dinaciclib", "THZ1", "SNS-032", "Flavopiridol", "AT7519", "R547","PHA-767491")
drugList
[1] "Dinaciclib"   "THZ1"         "SNS-032"      "Flavopiridol" "AT7519"      
[6] "R547"         "PHA-767491"  
viabMat <- screenData %>% filter(diagnosis  %in% "CLL", Drug %in% drugList) %>%
  group_by(patientID, Drug) %>% 
  summarise(viab = mean(viab.auc)) %>%
  pivot_wider(names_from = "patientID", values_from = "viab") %>%
  column_to_rownames("Drug") %>% as.matrix()

patAnno <- patMeta %>% filter(Patient.ID %in% colnames(viabMat)) %>%
  select(Patient.ID, IGHV.status, trisomy12, TP53, SF3B1, NOTCH1) %>%
  dplyr::rename(patID = "Patient.ID")

PCA

pcRes <- prcomp(t(viabMat), center = TRUE, scale. = TRUE)
pcTab <- pcRes$x[,1:2] %>% as_tibble(rownames = "patID") %>%
  left_join(patAnno)
varExp <- pcRes$sdev^2
varExp <- varExp/sum(varExp)

PCA plot

PCbiplot <- function(PC, x="PC1", y="PC2") {
    # PC being a prcomp object
    varExp = (pcRes$sdev^2)/sum(pcRes$sdev^2)
    
    plotTab <- pcRes$x %>% data.frame() %>% rownames_to_column("patID") %>%
      left_join(patAnno, by = "patID") %>%
      filter(!is.na(IGHV.status),!is.na(trisomy12))

    p <- ggplot(plotTab, aes(x=PC1, y=PC2)) + 
          geom_point(aes(color = IGHV.status, shape = trisomy12), size=3) + 
          theme_bw() + xlim(-5,5) + ylim(-5,5) +
          xlab(sprintf("PC1 (%1.1f%%)", 100*varExp[1])) + 
      ylab(sprintf("PC2 (%1.1f%%)", 100*varExp[2])) +
  theme(legend.position = "bottom")

    datapc <- data.frame(varnames=rownames(PC$rotation), PC$rotation)
    mult <- min(
        (max(plotTab[,y]) - min(plotTab[,y])/(max(datapc[,y])-min(datapc[,y]))),
        (max(plotTab[,x]) - min(plotTab[,x])/(max(datapc[,x])-min(datapc[,x])))
        )
    datapc <- transform(datapc,
            v1 = .7 * mult * (get(x)),
            v2 = .7 * mult * (get(y))
            )
    p <- p + 
      ggrepel::geom_text_repel(data=datapc, aes(x=v1, y=v2, label=varnames), 
                               size = 5, vjust=1)
    p <- p + geom_segment(data=datapc, aes(x=0, y=0, xend=v1, yend=v2), arrow=arrow(length=unit(0.2,"cm")), alpha=0.4)
    p
}
PCbiplot(pcRes)

PC1 explains most of the variance, indicating those CDK inhibitors show similar trends. Perhaps except for Dinaciclib.

Heatmap of viabilities, ordered by PC1 value (not scaled)

library(pheatmap)
viabMat <- viabMat[,arrange(pcTab, PC1)$patID]
colAnno <- patAnno %>% mutate(PC1 = pcTab[match(patID, pcTab$patID),]$PC1) %>%
  column_to_rownames("patID") %>% data.frame()

pheatmap(viabMat, cluster_cols = FALSE, cluster_rows = TRUE, annotation_col = colAnno, scale = "none")

Heatmap of viabilities, ordered by PC1 value (row-scaled)

library(pheatmap)
pheatmap(viabMat, cluster_cols = FALSE, cluster_rows = TRUE, annotation_col = colAnno, scale = "row")

Higher PC1 is associated with more resistant to CDK inhibitors

Correlation plot

library(corrplot)
corrplot(cor(t(viabMat)))

We can use PC1 to summarise the general gradient of the response to CDK inhibitors, as the response patterns of those inhibitors are quite similar.

Associations with genomics

Prepare genomic data

geneTab <- patMeta %>% select(Patient.ID, IGHV.status, del10p:U1) %>%
  filter(Patient.ID %in% pcTab$patID) %>%
  mutate(IGHV.status = as.factor(2-as.numeric(as.factor(IGHV.status)))) %>%
  pivot_longer(-Patient.ID)

sumTab <- group_by(geneTab, name) %>%
  summarise(fracNA = sum(is.na(value))/length(pcTab$patID),
            numMut = sum(value %in% 1)) %>%
  filter(numMut >=3, fracNA <= 0.2)
geneTab <- filter(geneTab, name %in% sumTab$name)

Perform t-test

testTab <- pcTab %>% select(patID, PC1) %>%
  full_join(geneTab, by = c(patID = "Patient.ID"))

resTab <- group_by(testTab, name) %>% nest() %>%
  mutate(m=map(data, ~t.test(PC1 ~ value,., var.equal=TRUE))) %>%
  mutate(res = map(m, broom::tidy)) %>%
  unnest(res) %>%
  select(name, p.value, estimate) %>%
  arrange(p.value)
head(resTab)
# A tibble: 6 × 3
# Groups:   name [6]
  name   p.value estimate
  <chr>    <dbl>    <dbl>
1 del17p  0.0452    1.20 
2 del9q   0.0497   -1.77 
3 BRAF    0.0557    1.59 
4 FAT4    0.0710   -1.51 
5 NOTCH1  0.0935    0.869
6 EGR2    0.114    -1.23 

Boxplots

pList <- lapply(filter(resTab,p.value < 0.05)$name, function(x) {
  plotTab <- filter(testTab, name == x)
  ggplot(plotTab, aes(x=value, y=PC1, col=factor(value))) +
    geom_boxplot() + ggbeeswarm::geom_quasirandom() +
    theme(legend.position = "none") + 
    ggtitle(x)
})
cowplot::plot_grid(plotlist = pList, ncol=2)

del17p shows some weak association. # Association with mRNA expression

Pre-processing

Subsetting

load("~/CLLproject_jlu/var/ddsrna_180717.RData")
ddsSub <- dds[,dds$PatID %in% pcTab$patID]
ddsSub$PC1 <- pcTab[match(ddsSub$PatID, pcTab$patID),]$PC1
ddsSub$IGHV <- patMeta[match(ddsSub$PatID, patMeta$Patient.ID),]$IGHV.status
ddsSub$trisomy12 <- patMeta[match(ddsSub$PatID, patMeta$Patient.ID),]$trisomy12
ddsSub <- ddsSub[,!is.na(ddsSub$IGHV) & !is.na(ddsSub$trisomy12)]
#remove low abundance genes
ddsSub <- ddsSub[rowMedians(counts(ddsSub, normalized = TRUE),na.rm = TRUE)>10,]
#keep protein coding genes
ddsSub <- ddsSub[rowData(ddsSub)$biotype %in% "protein_coding" & !rowData(ddsSub)$symbol %in% c(NA,""),]

Voom transformation

countMat <- counts(ddsSub)
exprMat <- limma::voom(counts = countMat, lib.size = ddsSub$sizeFactor)$E

Remove invariant genes

sds <- genefilter::rowSds(exprMat)
exprMat <- exprMat[sds > genefilter::shorth(sds),]

Correlation test using Limma

library(limma)
designMat <- model.matrix(~PC1+IGHV+trisomy12, colData(ddsSub))
fit <- lmFit(exprMat, designMat)
fit2 <- eBayes(fit)
resTab <- topTable(fit2, coef = "PC1", number =Inf) %>%
  as_tibble(rownames ="id") %>%
  mutate(symbol = rowData(ddsSub)[id,]$symbol)

P-value histogram

hist(resTab$P.Value)

Associations are not strong.

Genes passed raw p value < 0.05 (none association passed 10% FDR)

resTab.sig <- filter(resTab, P.Value < 0.05) 
resTab.sig %>% mutate_if(is.numeric, formatC, digits=2) %>%
  DT::datatable()

Boxplot of top9 genes

pList <- lapply(seq(9), function(i) {
  rec <- resTab.sig[i,]
  plotTab <- tibble(expr = exprMat[rec$id,],
                    PC1 = designMat[,"PC1"],
                    IGHV=factor(designMat[,"IGHVU"]))
  ggplot(plotTab, aes(x=PC1, y=expr)) +
    geom_point(aes(col = IGHV)) + geom_smooth(method = "lm") +
    ggtitle(sprintf("%s (p=%s)",rec$symbol, formatC(rec$P.Value, digits=2)))
})
cowplot::plot_grid(plotlist= pList, ncol=3)

According the scatter plot, the associations are very moderate even though they passed 0.05 p-value

Pathway enrichment analysis

gmts <- list(H = "~/CLLproject_jlu/data/commonFiles/h.all.v6.2.symbols.gmt",
             KEGG = "~/CLLproject_jlu/data/commonFiles/c2.cp.kegg.v6.2.symbols.gmt",
             C6 = "~/CLLproject_jlu/data/commonFiles/c6.all.v6.2.symbols.gmt")

Cancer hallmmarks

resEnrich <- runCamera(exprMat, designMat, gmts$H, id = rowData(ddsSub)$symbol, pCut = 0.1, ifFDR = TRUE)
[1] "No sets passed the criteria"
resEnrich$enrichPlot
NULL

KEGG

resEnrich <- runCamera(exprMat, designMat, gmts$KEGG, id = rowData(ddsSub)$symbol, pCut = 0.1, ifFDR = TRUE)
[1] "No sets passed the criteria"
resEnrich$enrichPlot
NULL

Oncogenetic

resEnrich <- runCamera(exprMat, designMat, gmts$C6, id = rowData(ddsSub)$symbol, pCut = 0.1, ifFDR = TRUE)
[1] "No sets passed the criteria"
resEnrich$enrichPlot
NULL

Association with protein expression

Load datasets

library(proDA)
library(SummarizedExperiment)

#load datasets
load("~/CLLproject_jlu/var/proteomic_LUMOS_batch13.RData")

Preprocessing

protCLL$PC1 <- pcTab[match(colnames(protCLL), pcTab$patID),]$PC1
protCLL <- protCLL[,!is.na(protCLL$IGHV.status) & !is.na(protCLL$trisomy12) & !is.na(protCLL$PC1)]
protMat <- assays(protCLL)[["count"]] #without imputation
protMatLog <- assays(protCLL)[["log2Norm"]]

Sample size

dim(protCLL)
[1] 3314   56

Differential expression

colData <- data.frame(colData(protCLL))[,c("batch","IGHV.status","trisomy12","PC1")]
fit <- proDA(protMat, design = ~ . ,  col_data =  colData)
resTab <- test_diff(fit, "PC1") %>%
  dplyr::rename(id = name, logFC = diff, t=t_statistic,
                P.Value = pval, adj.P.Val = adj_pval) %>% 
  mutate(name = rowData(protCLL[id,])$hgnc_symbol) %>%
  select(name, id, logFC, t, P.Value, adj.P.Val, n_obs) %>%  
  arrange(P.Value) %>%
  as_tibble()
hist(resTab$P.Value)

No clear associations

Table of proteins with raw p-values <0.05 (no results passed 10% FDR)

resTab.sig <- filter(resTab, P.Value < 0.05)
resTab.sig %>% 
  mutate_if(is.numeric, formatC, digits=2) %>%
  DT::datatable()

Boxplot of top9 associations

pList <- lapply(seq(9), function(i) {
  rec <- resTab.sig[i,]
  plotTab <- tibble(expr = protMat[rec$id,],
                    PC1 = colData[,"PC1"],
                    IGHV=factor(colData[,"IGHV.status"]))
  ggplot(plotTab, aes(x=PC1, y=expr)) +
    geom_point(aes(col = IGHV)) + geom_smooth(method = "lm") +
    ggtitle(sprintf("%s (p=%s)",rec$name, formatC(rec$P.Value, digits=2)))
})
cowplot::plot_grid(plotlist= pList, ncol=3)

Pathway enrichment analysis

designMat <- model.matrix(~ batch + IGHV.status+trisomy12+PC1, colData)

Cancer hallmmarks

protImp <- assays(protCLL)[["QRILC"]]
resEnrich <- runCamera(protImp, designMat, gmts$H, id = rowData(protCLL)$hgnc_symbol, pCut = 0.1, ifFDR = TRUE, contrast = "PC1")
[1] "No sets passed the criteria"

KEGG

resEnrich <- runCamera(protImp, designMat, gmts$KEGG, id = rowData(protCLL)$hgnc_symbol, pCut = 0.1, ifFDR = TRUE, contrast = "PC1")
resEnrich$enrichPlot

Oncogenetic

resEnrich <- runCamera(protImp, designMat, gmts$C6, id = rowData(protCLL)$hgnc_symbol, pCut = 0.1, ifFDR = TRUE,contrast = "PC1")
[1] "No sets passed the criteria"
resEnrich$enrichPlot
NULL

Associations with BH3 profiling

BH3 profiling measures the cytochrome C release after treatment of BH3 peptides, to evaluate the sensitivity of cells to pro-apoptotic signals.

Preprocessing

load("../../BH3profiling/output/dynamicBH3.RData")
bh3Tab <- dynamicBH3 %>% filter(drug == "DMSO") %>%
  group_by(patID, peptide) %>%
  summarise(auc = mean(AUC))

Association test

testTab <- pcTab %>% full_join(bh3Tab, by = "patID") %>%
  filter(!is.na(auc),!is.na(PC1))
resTab <- group_by(testTab, peptide) %>% nest() %>%
  mutate(m = map(data, ~cor.test(~PC1+auc,.))) %>%
  mutate(res = map(m, broom::tidy)) %>%
  unnest(res) %>% arrange(p.value) %>%
  ungroup() %>%
  select(peptide, estimate, p.value) %>%
  mutate(p.adj = p.adjust(p.value, method= "BH"))

Result table

resTab %>% mutate_if(is.numeric, formatC, digits=2) %>% DT::datatable()

Plot significant associations (p<0.05)

pList <- lapply(filter(resTab,p.value < 0.05)$peptide, function(x) {
  plotTab <- filter(testTab, peptide == x)
  ggplot(plotTab, aes(x=auc, y=PC1)) +
    geom_point(aes(col=IGHV.status)) + geom_smooth(method ="lm") +
    ggtitle(x) + 
    xlab("BH3 priming")
})
cowplot::plot_grid(plotlist = pList, ncol=2)

Associations are pretty weak.


sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur/Monterey 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] proDA_1.10.0                limma_3.52.0               
 [3] DESeq2_1.36.0               SummarizedExperiment_1.26.1
 [5] Biobase_2.56.0              MatrixGenerics_1.8.0       
 [7] matrixStats_0.62.0          GenomicRanges_1.48.0       
 [9] GenomeInfoDb_1.32.1         IRanges_2.30.0             
[11] S4Vectors_0.34.0            BiocGenerics_0.42.0        
[13] corrplot_0.92               pheatmap_1.0.12            
[15] forcats_0.5.1               stringr_1.4.0              
[17] dplyr_1.0.9                 purrr_0.3.4                
[19] readr_2.1.2                 tidyr_1.2.0                
[21] tibble_3.1.7                ggplot2_3.3.6              
[23] tidyverse_1.3.1             jyluMisc_0.1.5             

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             shinydashboard_0.7.2   tidyselect_1.1.2      
  [4] RSQLite_2.2.14         AnnotationDbi_1.58.0   htmlwidgets_1.5.4     
  [7] grid_4.2.0             BiocParallel_1.30.0    maxstat_0.7-25        
 [10] munsell_0.5.0          codetools_0.2-18       DT_0.23               
 [13] withr_2.5.0            colorspace_2.0-3       highr_0.9             
 [16] knitr_1.39             rstudioapi_0.13        ggsignif_0.6.3        
 [19] labeling_0.4.2         git2r_0.30.1           slam_0.1-50           
 [22] GenomeInfoDbData_1.2.8 KMsurv_0.1-5           bit64_4.0.5           
 [25] farver_2.1.0           rprojroot_2.0.3        vctrs_0.4.1           
 [28] generics_0.1.2         TH.data_1.1-1          xfun_0.31             
 [31] sets_1.0-21            R6_2.5.1               ggbeeswarm_0.6.0      
 [34] locfit_1.5-9.5         bitops_1.0-7           cachem_1.0.6          
 [37] fgsea_1.22.0           DelayedArray_0.22.0    assertthat_0.2.1      
 [40] promises_1.2.0.1       scales_1.2.0           multcomp_1.4-19       
 [43] beeswarm_0.4.0         gtable_0.3.0           sandwich_3.0-1        
 [46] workflowr_1.7.0        rlang_1.0.2            genefilter_1.78.0     
 [49] splines_4.2.0          rstatix_0.7.0          broom_0.8.0           
 [52] BiocManager_1.30.17    yaml_2.3.5             abind_1.4-5           
 [55] modelr_0.1.8           crosstalk_1.2.0        backports_1.4.1       
 [58] httpuv_1.6.5           tools_4.2.0            relations_0.6-12      
 [61] ellipsis_0.3.2         gplots_3.1.3           jquerylib_0.1.4       
 [64] RColorBrewer_1.1-3     Rcpp_1.0.8.3           visNetwork_2.1.0      
 [67] zlibbioc_1.42.0        RCurl_1.98-1.6         ggpubr_0.4.0          
 [70] cowplot_1.1.1          zoo_1.8-10             haven_2.5.0           
 [73] ggrepel_0.9.1          cluster_2.1.3          exactRankTests_0.8-35 
 [76] fs_1.5.2               magrittr_2.0.3         data.table_1.14.2     
 [79] reprex_2.0.1           survminer_0.4.9        mvtnorm_1.1-3         
 [82] hms_1.1.1              shinyjs_2.1.0          mime_0.12             
 [85] evaluate_0.15          xtable_1.8-4           XML_3.99-0.9          
 [88] readxl_1.4.0           gridExtra_2.3          compiler_4.2.0        
 [91] KernSmooth_2.23-20     crayon_1.5.1           htmltools_0.5.2       
 [94] mgcv_1.8-40            later_1.3.0            tzdb_0.3.0            
 [97] geneplotter_1.74.0     lubridate_1.8.0        DBI_1.1.2             
[100] dbplyr_2.1.1           MASS_7.3-57            BiocStyle_2.24.0      
[103] Matrix_1.4-1           car_3.0-13             cli_3.3.0             
[106] marray_1.74.0          parallel_4.2.0         igraph_1.3.1          
[109] pkgconfig_2.0.3        km.ci_0.5-6            piano_2.12.0          
[112] xml2_1.3.3             annotate_1.74.0        vipor_0.4.5           
[115] bslib_0.3.1            XVector_0.36.0         drc_3.0-1             
[118] rvest_1.0.2            digest_0.6.29          Biostrings_2.64.0     
[121] rmarkdown_2.14         cellranger_1.1.0       fastmatch_1.1-3       
[124] survMisc_0.5.6         shiny_1.7.1            gtools_3.9.2          
[127] nlme_3.1-157           lifecycle_1.0.1        jsonlite_1.8.0        
[130] carData_3.0-5          fansi_1.0.3            pillar_1.7.0          
[133] lattice_0.20-45        KEGGREST_1.36.0        fastmap_1.1.0         
[136] httr_1.4.3             plotrix_3.8-2          survival_3.3-1        
[139] glue_1.6.2             png_0.1-7              bit_4.0.4             
[142] stringi_1.7.6          sass_0.4.1             blob_1.2.3            
[145] caTools_1.18.2         memoise_2.0.1