

Before we start

Some organizational details

Sarah Kaspar
Biostatistical Basics 2021

Course outline

Day	Title	Topics
1	Summarizing and visualizing data	How to work with data frames Use ggplot2 to create graphics Make graphs informative
2	Statistical distributions	what is sampling? what is a probability distribution? How can we fit data to a distribution?
3	Statistical tests	How statistical tests work Binomial test, T-test Non-parametric tests
4	Categorical data + Multiple testing	Contingency tables Test for independence Measures of association p-value adjustment + histogram

Each day:

- lecture
- demonstration in R
- tutored exercises
- discussion of solutions

Practical aspects

Questions:

- allowed any time
 - unmute
 - raise hand
 - chat

Course homepage:

- slides
- demonstrations
- exercises

Exercises

- not all the functions needed are covered in the course
- take your time
- google
- ask your team mates
- ask your tutors
- solutions on the next course day
- help your colleagues

Data exploration

Day 1

Sarah Kaspar
Biostatistical Basics 2021

Tools

programming language

Graphical user interface for R

R packages that make data
science user-friendly

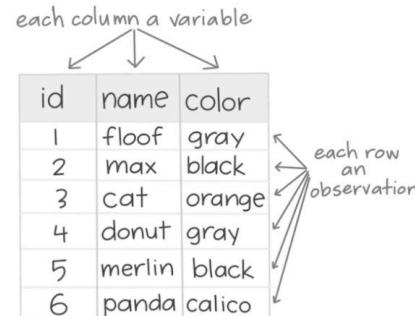
data sets and software for analyzing
biological data

Images:
<https://www.r-project.org/logo/Rlogo.png>
http://www.bioconductor.org/images/logo/jpg/bioconductor_logo_rgb.jpg
<https://tidyverse.tidyverse.org/articles/tidyverse-logo.png>
<https://www.rstudio.com/wp-content/uploads/2018/10/RStudio-Logo.png>

Tidy data

“**TIDY DATA** is a standard way of mapping the meaning of a dataset to its structure.”

—HADLEY WICKHAM


In tidy data:

- each variable forms a column
- each observation forms a row
- each cell is a single measurement

each column a variable

id	name	color
1	floof	gray
2	max	black
3	cat	orange
4	donut	gray
5	merlin	black
6	panda	calico

each row an observation

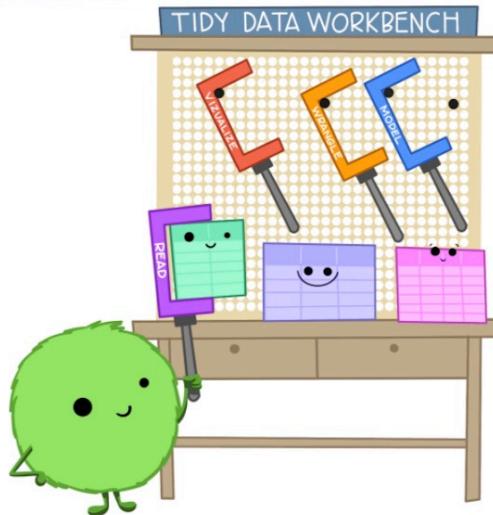
Wickham, H. (2014). Tidy Data. *Journal of Statistical Software* 59 (10). DOI: 10.18637/jss.v059.i10

Tidy data

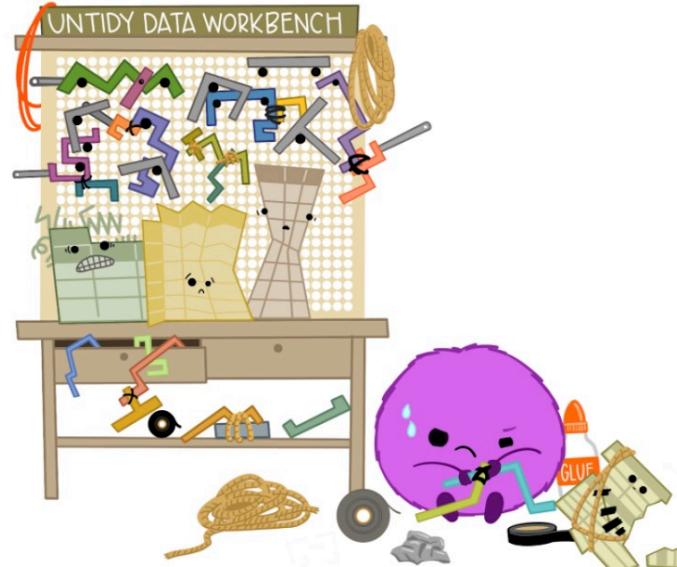
Question: what should be the rows and columns in that table, if you want to tidy it up?

assessment	Billy	Suzy	Lionel	Jenny
quiz1	NA	F	B	A
quiz2	D	NA	C	A
test1	C	NA	B	B

name	quiz1	quiz2	test1
Billy	NA	D	C
Suzy	F	NA	NA
Lionel	B	C	B
Jenny	A	A	B


Tidy data

name	assessment	grade
Billy	quiz1	NA
Billy	quiz2	D
Billy	test1	C
Jenny	quiz1	A
Jenny	quiz2	A
...


- Every combination of name, assessment and grade is a single observation.
- Every column is a variable (name, assessment, grade).
- Each cell is a single value.

Tools for tidy data

When working with tidy data, we can use the **same tools** in **similar ways** for different datasets...

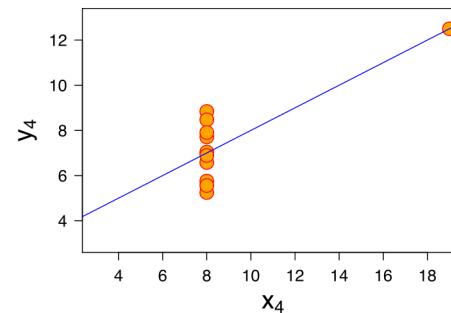
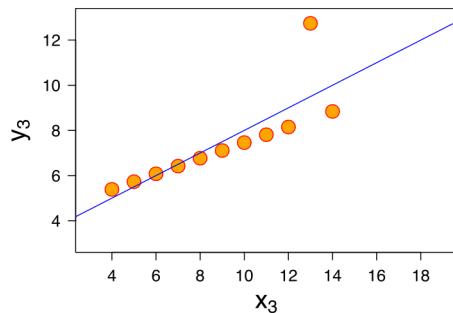
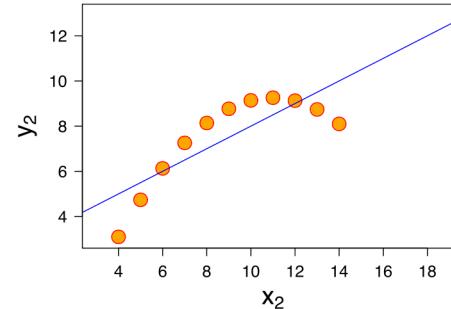
...but working with untidy data often means reinventing the wheel with **one-time approaches** that are **hard to iterate or reuse**.

Illustrations from the [Openscapes blog](#) *Tidy Data for reproducibility, efficiency, and collaboration* by Julia Lowndes and Allison Horst

Motivation

What is statistics?

A **summary statistic** “quantitatively describes or summarizes features from a collection” (Wikipedia)

examples: mean, median, min, max,...

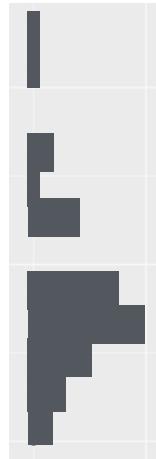
“**Inferential statistical analysis** infers properties of a population” (Wikipedia)

examples: hypothesis testing, t-test

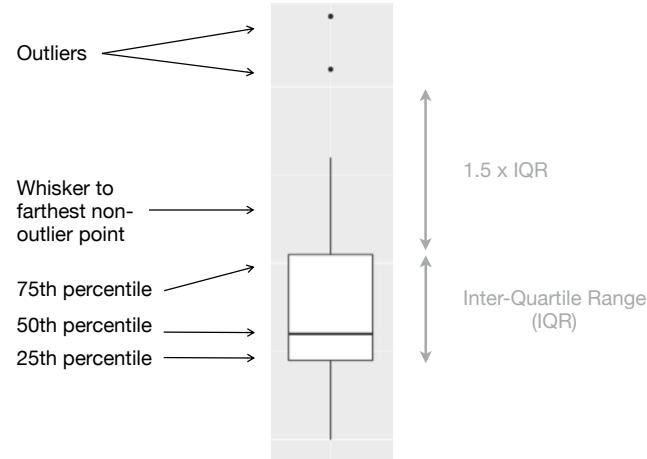
Anscombe quartett

Why is a summary statistic not enough when exploring data?

All four data sets have the same mean, variance, correlation and regression line.


→ Whenever possible, plot the data points!

Visual tools for data summary


The actual values in a distribution

How a histogram would display the values (rotated)

How a boxplot would display the values

