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Goals for this lecture:
- know some common 

distributions of biological data
- be able to decide which 

distribution might fit your data

Content:
- what is a distribution
- common distributions
- tools for comparing distributions

Exercises:
- apply the tools on example data
- decide for a distribution

Sources:
- “Introduction to statistical 

thought” (Michael Lavine)
- “Modern Statistics for Modern 

Biologists” (Wolfgang Huber 
and Susan Holmes)



sampling / 
experiment

reality

data

inference:

• find rules that the data follow

• model them with a suitable 
distribution

• this helps understanding reality

• underlying distributions are 
important for statistical tests

Motivation



Motivation
Question: Is there a difference in weight 
between mice with control vs. high-fat 
diet?

Problem: The difference in means could 
be by chance:
• we only have a sample of mice for 

each diet
• there is variation in the weights

Knowing the rules for randomness / 
variation will tell us how likely it is to see 
this difference by chance.

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑑𝑖𝑒𝑡 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

Statistical model:

follow a statistical distributiongroup means
data from Söderhede and Ahrén (2004)



Motivation

Image: https://de.m.wikipedia.org/wiki/Datei:Balanced_scale_of_Justice.svg

The interpretation of 
variance depends on the 
distribution

Effect 
size

sample 
size variance



Sampling

Sample: randomly and idenpendently drawn 
events from the population of interest

Population: the population/process you are 
interested in.

Randomness: You hope that these represent 
the population/reality well, but it is not 
guaranteed.

Independence: The observations don’t 
depend on each other.

Sample size: Number of observations in your 
sample

Distribution: Set of rules that the random 
numbers follow.

Random doesn’t mean there are no rules!

Example: estimate the fraction of light green frogs

sample1

sample2



What is a probability distribution?

à It assigns probabilities to possible outcomes of an experiment.
à Rules for randomness

Example: 
Number of light frogs within 10 catches.
True fraction: 1/3

possible outcomes:

...

probability of catching 3 light frogs

rare event

possible outcomes



Two types of probability distribution

discrete case:
observations can take only 
integer values (e.g. counts)

probability mass function

continuous case:

𝑃 𝑋 = 9 = 0

probability density function

probability of 
counting X=9 
frogs

𝑃 8 ≤ 𝑋 ≤ 10



Sampling distribution
à might follow the rules given by a theoretical distribution
à but as you’re sampling, it includes randomness



A few common distributions



Binomial distribution
à models the number of sucesses in a series of trials

Examples:
• prevalence of a disease within a fixed number of patients
• counting mutations in a genome
• how many of the caught frogs are green?

Parameters:
n: # caught frogs
p: probability of a caught frog 
being light green

𝑃 𝑋 = 𝑘 = 𝑛
𝑘 𝑝!(1 − 𝑝)"#!

𝑝 = 0.3
𝑛 = 10

possible outcomes:

...

expected value: 𝑛 ∗ 𝑝



Approximating the binomial distribution

possible outcomes:

...

Special case: large n and small p
How many light frogs can we expect to catch 
within 1h?

• catch about 100 frogs per hour: 𝒏 = 𝟏𝟎𝟎
• The fraction of light frogs is low: 𝒑 = 𝟎. 𝟎𝟐

à Expected number of light frogs per hour:

𝝀 = 𝒏 ∗ 𝒑 = 𝟐

The number of light frogs caught within one 
hour can be approximated with a Poisson 
distribution with just one parameter 𝝀. 

we’re not interested in 
the dark frogs, or how 
many frogs we caught 
in total!

fill the net for 1h

𝑛 ≈ 100



Poisson

Examples:
• counted frogs over 1 hour
• counting cells in a fixed volume
• mutations in genome

𝑃 𝑋 = 𝑘 =
𝜆!𝑒#$

𝑘!

counting events over a fixed domain (period of time, space)
events have an underlying rate

Parameters:
• estimate for λ: sample mean
• variance = λ



Gamma-Poisson

à the overdispersed (= more spread out) 
version of Poisson 

Examples:
• Counting frogs in different lakes
• read counts of a gene (difference 

between samples)
• cell counts in different volumes / 

individuals

Parameters:
mean: the average Poisson rate
scale: how much the lambdas spread

𝑋 ~𝑃𝑜𝑖𝑠(𝑔𝑎𝑚𝑚𝑎 𝜇, 𝜃 )



Gaussian

Examples:
• frog / cell sizes
• temperatures
• pixel intensities

𝑓 𝑋 =
1

𝜎 2𝜋
𝑒#

%
&
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Parameters:
𝜇 mean
𝜎 variance

estimate: sample mean
𝜇

𝜎



How are the distributions related?

𝑩𝒊𝒏(𝒏, 𝒑)

𝑷𝒐𝒊𝒔𝒔𝒐𝒏(𝝀) 𝑵𝒐𝒓𝒎𝒂𝒍(𝝁, 𝝈𝟐)

𝑛 large
𝑝 small

𝜆 = 𝑛 ∗ 𝑝

𝜆 large
𝜇 = 𝜆
𝜎& = 𝜆

𝜇 = 𝑛 ∗ 𝑝
𝜎& = 𝑛𝑝(1 − 𝑝)

𝑛 large
𝑝 ≈ %

&

Graphic adapted from 
https://www.youtube.com/watch?v=u9onO78hDlw



What does ”fitting a distribution” mean?

• most common: maximum likelihood approach

• find the parameters for which it is most likely to see the given data 
(optimization problem)

• minimize the deviance (i.e. the distance between the “line” and the 
“points”)

• in Gaussian case: minimize sum of squares



Tools for comparing distributions

Histogram

# counts predicted 
by density

97th quantile



Tools for comparing distributions

Histogram Cumulative distribution

𝑃(𝑋 ≤ 𝑥)

#(𝑋 ≤ 𝑥)

# counts predicted 
by density

theoretical

empirical



Tools for comparing distributions

Histogram Cumulative distribution QQ-plot

𝑃(𝑋 ≤ 𝑥)

#(𝑋 ≤ 𝑥)

The 25th quantile is the value k at 
which 25% of the data points are 
smaller than k.

# counts predicted 
by density

theoretical

empirical 97th quantile

median



How to find the right distribution for 
your data

1. Fit your data to a distribution that you consider plausible
àYou get the best parameters for this distribution given your data

2. Visually compare the theory (=fitted distribution) to your data points
àA good fit doesn’t show systematic deviations of the data points from theory

3. Do the same with other plausible distributions

4. Decide which of the fits looks best to you (not always obvious)!
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