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Goals for this lecture:
- understand the common 

principles behind statistical 
tests

- learn how sampling distribution 
impacts your choice of test

- learn to spot common pitfalls

Content:
- binomial test
- t-test
- alternatives to t-test

Sources:
- These slides are based on a 

lecture on testing by Bernd 
Klaus and Wolfgang Huber 
(2018)



Example: Mice weights
Question: Is there a difference in weight 
between mice with control vs. high-fat 
diet?

Problem: The difference in means could 
be by chance:
• we only have a sample of mice for 

each diet
• there is variation in the weights

Knowing the rules for randomness / 
variation will tell us how likely it is to see 
this difference by chance.

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑑𝑖𝑒𝑡 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

Statistical model:

data from Winzell and Ahrén (2004)
follow a statistical distributiongroup means



Null and alternative hypothesis
Null hypothesis (H0): There is no 
difference between the two diet groups.

Alternative hypothesis (H1): There is a 
difference between the two diet groups.

We reject the null hypothesis when –
assuming it was true – it would be very 
unlikely to observe a difference as 
extreme as in our data just by chance.

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑑𝑖𝑒𝑡 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

Alternative model:

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑔𝑟𝑎𝑛𝑑 𝑚𝑒𝑎𝑛 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

Null model:

group means
data from Winzell and Ahrén (2004)



Steps of hypothesis testing

1. Set up a null model / null hypothesis

2. collect data

3. calculate the probability of the data in the null 

model

4. decide: Reject the null model, if the above 

probability is too small



Example: disease prevalence

Scenario:
• Known prevalence: 4%
• 100 test persons with a 

precondition, 9 of them have the 
disease

Hypotheses:
• H0: The prevalence in the test 

group is also 4% (“boring” 
outcome, we want to collect 
evidence against it)

• HA: The prevalence in the test 
group differs from 4%.

• Null model: binomial distribution 
with n=100, p=0.04

prevalence: 
4%



Example: disease prevalence

observation: 
𝑋 = 9

Null distributionWhat is the probability of seeing an 
event at least as extreme as the 
observed one under H0?

• The probability of observing 9 or 
more persons with disease is rather 
unlikely: 𝑃 𝑋 ≥ 9 = 0.019

• The null hypothesis is likely false.



Example: disease prevalence

We usually call the result significant, if
the pobability under H0 is smaller than
5 %. significance level:

𝛼 = 0.05

P X ≥ 8 < 0.05



Question

What was wrong (conceptionally) about this test? 



Example: disease prevalence

What we did was a one-sided test.

One-sided: look only in one direction: 
HA: 𝑝 > 0.04 or 
HA: 𝑝 < 0.04

significance level:
𝛼 = 0.05

P X ≥ 8 < 0.05



Example: disease prevalence

Which numbers of test persons are very 
unlikely / extreme, assuming H0 is true?

Two-sided: look in both directions 
HA: p ≠ 0.04

• Observing less than one person 
with disease is very unlikely: 
𝑃 𝑋 = 0 = 0.017

• observing more than 8 persons 
with disease is also very unlikely: 

𝑃 𝑋 > 8 = 0.019

P X ≥ 9 < 0.025
P X ≤ 0 < 0.025



Excursion: Data snooping
What was wrong about the one-sided test?

• We decided on the direction to look at after
collecting the data

• The significant level ⍺ is not true anymore!

• There is a 50% chance that your sample is higher or 
lower than the expected value à the true ⍺ is 0.1

Question: When is a one-sided test OK?



Errors in hypothesis testing

Not rejected rejected

H0 true
true negative

false positive
type I error

H0 false false negative
type II error true positive

Great page:
https://en.wikipedia.org/wiki/Confusion_matrix

we try to avoid type II error 
by choosing methods with a 
high power

we increase type I error
by:
• multiple 

comparisons
• data snooping
• certain violations of 

assumptions (e.g. 
independence)



Mouse weights
Compare a sample mean  to µ0

Null hypothesis: The weight in the sample is µ0.

Alternative hypothesis: The weight in the
sample is different from µ0.

data from Winzell and Ahrén (2004)



One-sample t-test

Compare a sample mean  to µ0

The t statistic:

𝑡 =
𝑥̅ − 𝜇!
(𝜎/ 𝑛

standard error of the mean

difference between sample 
mean and 𝜇!

data from Winzell and Ahrén (2004)



Why is t a useful statistic?

Image: https://de.m.wikipedia.org/wiki/Datei:Balanced_scale_of_Justice.svg

Effect 
size

sample 
size variance

𝑡 =
𝑥̅ − 𝜇!
(𝜎/ 𝑛

standard error of the mean

difference between sample 
mean and 𝜇!



What is the null distribution of t?

In order to calculate a p-value, we have to find 
the null distribution of t.
àThe distribution that t follows when the two 

groups are equal.

Two explanations

• Using the central limit theorem
• Through simulation (à demonstration in R)



Central limit theorem

https://www.youtube.com/watch?v=jvoxEYmQHNM



Central limit theorem

The sum of random variables tends towards a normal 
distribution with increasing N.

For our example:

The more mice we sample (N), the more the 
distribution of the sample average will look like a 
Gaussian distribution with 

- mean =  the true average weight of mice

- standard deviation = standard error of the mean 

Standard error of the mean:
quantifies how well a sample estimates the mean

𝑆𝐸 = 𝜎/ 𝑛

more measurements lead 
to better approximation of 
the mean



One-sample t-test

Compare a sample mean  to µ0

The t statistic:

𝑡 = #̅$%!
&'/ )

= *.,
-.!.

= 2.57

Central limit theorem: If H0 is true, then t follows a 
normal distribution with mean 0 and sd=1.

But: CLT is only true for large sample sizes!

data from Winzell and Ahrén (2004)



The t-distribution

𝑡 =
𝑥̅ − 𝜇!
(𝜎/ 𝑛

If H0 is correct, the t statistic follows a t distribution with 𝑛 − 1
degrees of freedom.

difference between sample 
mean and 𝜇!

standard error of the mean

Image from https://en.wikipedia.org

Degrees of freedom:
the number of values in the 
calculation of t that are free 
to vary

Applicable to small sample sizes



One-sample t-test

Compare a sample mean  to µ0

The t statistic:

𝑡 = #̅$%!
&'/ )

= *.,
-.!.

= 2.57

P-value:

𝑝 = 0.02

data from Winzell and Ahrén (2004)



Two-sample t-test

𝑡 =
𝑥̅ − 2𝑦
𝑆𝐸

𝑆𝐸 =
I𝜎!" + I𝜎#"

𝑛

If H0 is correct, the t statistic follows a t distribution with nx+ny-2 degrees of 
freedom.

for equal 
variances and 
sample size

difference between the two
sample means

standard error



Paired t-test

1 month
high-fat diet

weight before weight after 0

10

20

30

before after
Time

Bo
dy
we

ig
ht Time

before

after

Example: The weight of 15 mice is measured 
before and after 1 month of high-fat diet.

high variance between 
individual mice weights

Unpaired t-test: 
𝑝 = 0.31
estimated difference: 2.06

Simulated data



Paired t-test
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Simulated data



Paired t-test
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One-sample t-test

H0: the mean weight gain/loss is equal to zero.

estimated difference: 2.06
p-value: 3×10$%

𝜇* = 0



Pairing increases power

The paired t-test has an increased power compared to the two-sample t-test
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controlled for in 
paired design

Sources of randomness:

• individual responses to the 
treatment

• mice have different weights to 
start with



Question

Why did the authors of the real study decide NOT to 
set up a paired experiment? 



Wilcoxon test
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This test is used for non-Gaussian 
distributions.

Null hypothesis: 
The two distributions X and Y are equal.
𝑃 𝑋 > 𝑌 = 𝑃(𝑌 > 𝑋)

Statistic: 
The value of U gets small in case the rank 
sums differ between the groups.

Be aware: 
- distances don’t matter!
- t-test usually has higher power than the 

Wilcoxon test.

p-value: 0.04

test statistic:    𝑈! = ∑& 𝑟𝑎𝑛𝑘 − '!('!$")
"

𝑈 = min(𝑈! , 𝑈#) rank sum in case X has
all the lower ranks

Data from dslabs package



Summary: testing workflow
1. Set up a hypothesis 𝐻* that you want to reject.

2. Find a test statistic that should be sensitive to deviations from 𝐻* .

3. Find the null distribution of the test statistic – the distribution that 
it follows under the null hypothesis.

4. Compute the actual value of the test statistic.

5. Compute the p–value: The probability of seeing a value as least as 
extreme as the computed value in the null distribution.

6. Decide (based on significance level) whether to reject the null 
hypothesis.



In practice

1. Look at your data!

2. Decide on a distribution that your data follow.

3. Possibly transform your data to match a suitable distribution 
(suitable: a convenient test is available for this distribution).

4. Find a test that answers your question and is suitable for the 
distribution (or generally: the properties) of your data.

5. Perform the test. Report the p-value and the effect size.



Interpreting p-values

• The p-value is the probability that the observed data could happen, 
under the condition that the null hypothesis is true.

• It is not the probability that the null hypothesis is true.

• Absence of evidence is not evidence of absence.

• Significance levels are arbitrary.

• Siginficant effect does not imply relevant effect.



Question
How do you interpret this outcome?
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T-test:
p=0.01
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