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Contingency tables

We count cases and divide them into categories:

Disease

treatment yes no

treated 4 96

untreated 10 90

Question:
Is there an association between disease and treatment?
Are the proportions of diseased persons different in the 
two treatment groups?
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Contingency tables

We count cases and divide them into categories:

Disease

treatment yes no

treated 4 96

untreated 10 90

Question:
Is there an association between disease and 
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Are the proportions of diseased persons 
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Terminology:

cell 
counts

column totals

row
 totals

total 
count



Contingency tables
... with frogs

Colour

sex light dark

female

male

Question: 
Is there an association between sex and colour?

To answer this question, we 
have to understand where 
the cell counts come from.



Different study designs

Poisson sampling:

• Each category has its own Poisson rate:
𝜆 = 𝒏 ∗ 𝒑



Different study designs

Binomial sampling:

• Fixed number of 𝒏𝒇 female frogs
• Fixed number of 𝒏𝒎 male frogs
• For each sex, there is the probability 

of being light: 𝒑



Different study designs

Multinomial sampling:

• Fixed number of 𝒏 frogs
• Each category has its own 

probability: 𝒑



Expected counts

Colour
sex light dark

female 𝒏 ∗ 𝒑𝟏𝟏 𝒏 ∗ 𝒑𝟏𝟐

male 𝒏 ∗ 𝒑𝟐𝟏 𝒏 ∗ 𝒑𝟐𝟐

New question: 
Are the probabilities dependent on each other?

The expected counts are the same for these study designs: 



Probability rules for independence

Independence:

𝑃 𝐴, 𝐵 = 𝑃 𝐴 ∗ 𝑃(𝐵)

Example: Flip two coins

𝑃 ℎ𝑒𝑎𝑑, ℎ𝑒𝑎𝑑 = 𝑃 ℎ𝑒𝑎𝑑 ∗ 𝑃 ℎ𝑒𝑎𝑑 = 51 4

The outcomes of the two coins are 
independent.

Association:

𝑃 𝐴, 𝐵 ≠ 𝑃 𝐴 ∗ 𝑃(𝐵)

Example: hair and eye colour

𝑃 𝑏𝑙𝑜𝑛𝑑, 𝑏𝑙𝑢𝑒 = 𝑃 𝑏𝑙𝑜𝑛𝑑 ∗ 𝑃 𝑏𝑙𝑢𝑒 𝑏𝑙𝑜𝑛𝑑

Hair and eye colour are associated.

conditional probability: blonds are 
more likely to have blue eyes than 
dark-haired



Expected counts under H0

disease
treatment yes no

treated 𝒏𝟏𝟏 𝒏𝟏𝟐

untreated 𝒏𝟐𝟏 𝒏𝟐𝟐

Observed counts:

𝑃 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 =
𝑛"" + 𝑛("

𝑛))

marginal 
probabilities

𝑃 𝑡𝑟𝑒𝑎𝑡 =
𝑛"" + 𝑛"(

𝑛))

Null hypothesis: disease and 
treatment are independent.

à We expect that the product of the 
marginal probabilities is a good 
estimate for the cell count:

Expected counts:

𝝁𝟏𝟏 = 𝑷 𝒅𝒊𝒔𝒆𝒂𝒔𝒆 ∗ 𝑷 𝒕𝒓𝒆𝒂𝒕 ∗ 𝒏))
…



Expected counts

Disease

treatment yes no total

treated 4 96 100

untreated 10 90 100

total 14 186 n = 200

𝑃 𝐷 =
14
200

= 0.07

𝑃 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 =
100
200

= 0.5

Expected counts 
assuming independence:

𝐸 𝑛*+,-*,.,.01,-1,
= 𝑃 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 ∗ 𝑃 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 ∗ 𝑛))
= 0.5 ∗ 0.07 ∗ 200

= 7



Chi-Square test

Statistic:

χ! = ∑"#
OPQ RSPQ

T

SPQ

χ( quantifies the deviation from independence.

χ( follows a chi-squared distribution with (𝑟 − 1) ∗ 𝑐 − 1 degrees 
of freedom.

𝑂:   observed count
𝐸:   expected count under H0 

𝑖, 𝑗:  row and column index
𝑟 :   number of rows
𝑐:    number of columns

Question: How can we use this information to perform a test?



In our example

Output from R: 
chisq.test(array(c(4,96,10,90), dim=c(2,2)), correct=FALSE)

Pearson's Chi-squared test

data:  array(c(4, 96, 10, 90), dim = c(2, 2))
X-squared = 2.765, df = 1, p-value = 0.09635

Disease

treatment yes no total

treated 4 96 100

untreated 10 90 100

total 14 186 n = 200
Question: What else should we 
report?



Quantifying association

Difference in 
proportions

D = P disease N) − P disease T The absolute difference between the 
proportions of disease cases in the two 
groups is 6%.

Relative risk
RR =

P disease T)
P disease N)

The proportion of disease cases in the 
treated group is 0.4 times the proportion of 
disease cases in the no treatment group.

Odds ratio
OR =

P disease T /(1 − P disease T )
P diesese N /(1 − P disease N )

The odds for having the disease when 
treated is 0.38 times the odds when being 
untreated.

Log odds ratio log(OR) ... a useful parameter for models (-0.97)
log(OR) > 0: disease more likely when 
untreated
log(OR)<0: disease more likely when treated



Visualizing association

Independence Association



Overdispersed data

Overdispersion: For each measurement, 
the rate lambda is slightly different (it’s 
drawn from a gamma-poisson 
distribution).

For each cell:  𝜆 ~ 𝐺𝑎𝑚𝑚𝑎𝑃𝑜𝑖𝑠(𝜇, 𝜃)

Question: How can we estimate the 
spread from a contingency table?

Average 
rate

spread

Cell type

treatment control cancer

treated 0 5

untreated 10 28

Example: Expression counts

Research question: is there a cell-type 
specific response to the treatment?

Known sources of variation: individual cell-
to-cell differences in expression.



Overdispersed data

à We need more counts for each 
combination of variables.

à Represent data in a data frame:

treatment Cell type count

untreated control 0

untreated control 28

untreated control 5

untreated cancer 37

untreated cancer 20

… … …

Gamma-poisson regression fits:
• Overdispersion
• Individual effects of cell type and treatment
• Interaction between cell type and treatment 

Several
measurements per 
combination



Summary
• Contingency table:

• Row and column =  two different variables
• Each cell is a count from 1 combination of the two variables 

(Poisson or binomial counts)

• We are interested in the association between the two variables:
• A chi-square test gives a significance of the association
• The effect size is a measure or association, e.g. relative 

risk

• Limitations of contingency tables:
• Can only deal with one count per combination of variables
• Does not allow to estimate overdispersion
• Use regression in these cases

• Contingency tables can be extended to more dimensions.


