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Sources:

- Oehlert (2010) “A first course in 
design and analysis of 
experiments” – Chapter 5 

- Huber and Holmes: ”Modern 
statistics for modern bioligists” –
Chapter 6



Multiple testing scenarios in biology

Scenarios

• Expression profiling

• Compound screens

• Drug screens

• Genome-wide association studies

• Proteomics

• … 

Questions:

• Which genes are DE due to some 
condition?

• Which drugs are candidates for 
targeting a specific pathway/protein?

• Which genetic variants are associated 
with a particular disease?

• Is any of the compounds in a 
medication unsafe?

Problem: Many false positives.
Solution: Methods that implement false-positive control.



Workflow summary

The most important part is to know which 
error rate you want to control for.

The error rate depends on how you phrase 
your question.

If you know the error rate, the choice of 
method is (mostly) straight-forward.

question

Error rate

method



Testing a single hypothesis

Not rejected rejected

H0 true
true negative

false positive
type I error

H0 false false negative
type II error true positive

Great page:
https://en.wikipedia.org/wiki/Confusion_matrix



Comparison-wise error rate

• The usual error rate (= significance level) for a t-test / Wilcoxon test / Chi-
square test …

• For 𝛼 = 0.05: If H0 is true, there is a 5% chance of a false rejection.

• Used when all tests are viewed as individual questions.

• Nothing is corrected for.

Example:
• does the high-fat diet have an impact on weight in female mice?
• does it have an impact in male mice?



Example: epitopes

100 positions on a protein are tested for a reaction.

Question: Does the protein cause any reaction?

H01: position 1 is no epitope.
H02: position 2 is no epitope.
...
H0: no position is an epitope.

Question: What is the probability of calling at least one 
false-positive epitope out of 100?

Data from https://www.huber.embl.de/msmb/



Family-wise error rate

The probability of rejecting one or more 𝐻!" (and thus rejecting 𝐻!) when all 
𝐻!" are true.

Example type I error Inflation:

If we test every position with 𝛼 = 0.05:
𝑃 false rejection of H0 = 1 − 𝑃 no rejection of any H0i

= 1 − 0.95#!!
= 0.994



Bonferroni correction

• Used to control the FWER at a desired value 𝛼$%&'

• Adjusted p-values: 𝒑𝒂𝒅𝒋 = 𝒑𝒖𝒏𝒂𝒅𝒋×𝒎, where 𝑚 is the number of tests

• Adjusted p-values give the chance of seeing any value as extreme as this 
within m tests under H0.

• We call the test significant if  𝑝-./ ≤ 𝛼$%&'.

• Equivalent: Reject every test at 𝛼$%&'/𝑚



Side note

The epitope data are discrete.

For discrete test statistics, p-values are conservative (i.e. too large).

𝑃 𝑝 < 0.05 ≤ 0.05

This also affects multiple testing:
𝑃 false rejection of H0 ≤ 0.994

Ways to address this problem:
• Mid p-values
• Randomized p-values
• Modified adjustment procedures

Further reading: 
Chapter 1.1.4 in Agresti, A. (2006). An Introduction to Categorical Data 
Analysis: Second Edition. https://doi.org/10.1002/0470114754

https://doi.org/10.1002/0470114754


Example: Screening for 
differentially expressed genes

Question: Which genes are differentially expressed 
under some condition? 

𝐻!": gene 1 is not DE.
𝐻!#: gene 2 is not DE.
...
𝐻!,"!!!!: gene 10000 is not DE.

Problem: If controlling for family-wise error rate, the 
probability of finding anything at all is small (low 
power).

Family-wise error rate 
for 104 tests:

Figure: https://www.huber.embl.de/msmb/Chap-
Testing.html#multiple-testing



False discovery rate
FDR: expected value of the false discovery fraction %&

%&'(&
.

What percentage of hits are false positives?

Scenario: We expect some of the 𝐻!) to be true and some to be 
false.

Trade-off between type I and type II error:
• if controlling for family-wise error rate, the probability of 

finding anything at all is small (low power).
• we allow some percentage of false discoveries to increase 

power.

Benjamini-Hochberg algorithm:
• Allows FDR control

Not 
rejected

rejected

H0
true TN FP

H0
false FN TP



p-value histogram

No genes is DE: Some genes are DE:

p-values are uniformly distributed. Peak at low p-values.



p-value histogram decomposition

𝑓 𝑝 = 𝜋A + 1 − 𝜋A 𝑓BCD 𝑝

Density of p-values

Figure: https://www.huber.embl.de/msmb/Chap-Testing.html#the-local-fdr

H0 is true

H0 is false
uniform 
component

alternative component 
(HA is true)

some cut-off 
p-value

f(p)

Local fdr: fdr 𝑝 = E*
F(H)

FDR: FDR 𝑝 = E*H
∫*
+ F D KD

Applies to tests 
rejected just at this 
threshold

An average property of 
all tests rejected below 
the threshold



p-value histogram decomposition

Figure: https://www.huber.embl.de/msmb/Chap-Testing.html#the-local-fdr

H0 is true

H0 is false

TP

TNFP

FN

Benjamini Hochberg algorithm:

• Estimates the uniform component 
(null is true)

• Finds a critical p-value c, so that 
rejecting everything below c will lead 
to the desired FDR

• Equivalently: Gives adjusted p-values, 
so that rejecting everything below 𝑝,-.
will lead to an FDR of 𝑝,-..



Multiple testing opportunity

Multiple testing doesn’t have to be a burden:

• Helps to estimate the uniform component (null is true)
• Helps to prevent over-optimism (type I error)
• The FDR has a much more useful interpretation than the p-value

• Closer to the question “What is the probability that this hit 
is wrong?”



p-value histogram decomposition

Figure: https://www.huber.embl.de/msmb/Chap-Testing.html#the-local-fdr

H0 is true

H0 is false

TP

TNFP

FN

Question: What would change in the histogram if the test has a low power? 



Pairwise comparisons

Questions:

• How can we test the individual differences?

• How many comparisons are possible in this data 
set?

• If we choose 𝛼 = 0.05, what is the probability of 
seeing at least one significant difference, if in fact 
all differences are 0?

Plant growth data (from R)

𝑃 at least one false rejection = 1 − 0.95 0 = 0.14
0
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Pairwise comparisons

ANOVA F-test:

H0: All differences are zero.
HA: Not all differences are zero.

• ANOVA is used for comparing more than one mean.
• In case of two groups, ANOVA is equivalent to t-

test.
• ANOVA controls for the family-wise error rate.

p=0.016

Tukey HSD:

Gives adjusted p-values for the individual 
comparisons.
Controls for the FWER.
H0: all differences are zero.
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Data snooping

Only performing tests that were suggested by the data.

“Hmmm, these look 
different...”

Question: Can you think of scenarios 
where you
- don’t have to adjust the p-values
- don’t have to do ALL comparisons?

p=0.009



Workflow summary

The most important part is to know which 
error rate you want to control for.

If you know the error rate, the choice of 
method is mostly straight-forward.

Be honest to yourself when it comes to 
data snooping.

question

Error rate

method



Summary error rates

Error rate Scenario Examples

Comparison-wise 
(no adjustment)

Each test is an individual 
question.

Test for female and male mice 
separately whether the diet has an 
effect.

Family-wise Control the probability of at 
least one false positive.

A protein is considered safe if no 
epitope causes a reaction.
Pairwise comparisons: Is any of the 
differences non-zero?

False-discovery 
rate

Allow a few false positives to 
increase power.

Drug screens
Screens for differentially expressed 
genes


