MCMC and Bayesian modeling in R

Sarah Kaspar Centre for Statistical Data Analysis 2022-11-18

Tutorial overview

- Markov chain Monte Carlo simulation
 - And why we need it
- Demonstration in R
 - Bayesian GLM for survey data
 - Bayesian LMM (Partial pooling) for Bayesball data
- (Open coding / Exercises)

Bayesian approach takes prior knowledge into account

Methods overview: How to find a posterior

- Closed form solution
 - Easy with conjugate priors
 - Difficult otherwise
- Markov chain Monte Carlo simulation

Some implementations in R:

- Established packages for specific data sets
 - DESeq2, edgeR, limma, ...
- rstanarm (wrapper for STAN programming)

♠

marginal likelihood requires integrating over prior

In MCMC, we sample from this distribution:

 $P(\theta|data) \propto P(data|\theta) \cdot P(\theta)$

This term is easy to solve for specific values of parameters and data.

MCMC algorithm

Sampling from the joint probability distribution:

 $P(\theta|data) \propto P(data|\theta) \cdot P(\theta)$

- 1. Randomly initialize parameter(s)
- 2. Random walk through parameter space:

The random walk visits locations with high $P(\theta | data)$ more often.

MCMC algorithm

The Markov Chain **approximates the posterior distribution**.

Posterior mode/mean and **credible intervals** can be approximated from the sample.

Practical aspects:

- There is a "burn in" period, before the chain converges.
- Not all chains converge.
- Initialize several chains and check whether they converge to the same parameters (otherwise they sample from local optima)

Survey: Who agrees to the statement: "Women should [...] leave running the country up to men."

education <int></int>	gender <fctr></fctr>	agree <dbl></dbl>	disagree <dbl></dbl>	
0	Male	4	2	
1	Male	2	0	
2	Male	4	0	
3	Male	6	3	

glm(cbind(agree, disagree) ~ education + gender, family = binomial(link = "logit"))

x: variables Linear predictor: a,: intercept $\eta = a + x^T b$ b_1, b_2 : coefficients for education and gender

Binomial likelihood for single observation:
$$\binom{n}{y} (\operatorname{logit}(\eta))^{y} (1 - \operatorname{logit}(\eta))^{n-y}$$

https://mc-stan.org/rstanarm/articles/rstanarm.html

Example data – what does rstanarm do?

Translate into joint distribution $P(data|\theta) \cdot P(\theta)$

Run a series of MCMC chains that sample from this distribution

References

Dong, Ting & An, Dawn & Kim, Nam. (2019). Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB. 10.5772/intechopen.82781.

Example from: https://mc-stan.org/rstanarm/articles/rstanarm.html