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What is multivariate analysis?

•Many studies collect information on multiple variables repeated for each observation.

•Modern datasets are often high-dimensional, with thousands to millions of variables 
(“dimensions”) per sample.

•Multivariate Analysis is an umbrella term for techniques to analyze more than one variable 
at a time. It encompasses many statistical methods:

• PCA, 

•Correspondence Analysis, 

• Factor Analysis, 

•Multidimensional Scaling, t-SNE, UMAP, … 

•Autoencoders
and many others.  



Why do you need 
multivariate 
analysis?

In a lot of cases, you are not 
interested in how a single 
variable behaves on its own, but 
how all variables or a group of 
variables behave together 
jointly or how they affect each 
other.



Goals for this lecture

• See examples of multivariate data coming up in biological studies and others.

• Learn how to preprocess, center and rescale data before the analysis.

•Understand the importance of correlations between variables.

• Recognize why dimensionality reduction is useful.

• Build new variables, called principal components (PC), that are more useful than the original 
measurements.

• See what is “under the hood” of PCA and learn how to choose the number of principal components.

•Generate helpful visualizations of PCA results.

• Run through a complete PCA analysis from start to finish.



Datasets 



Data format
• Datasets can often be organized as a rectangular table.
•  Rows correspond to experimental or study units (e.g., environmental 

sample, patient biopsy, customer order), and 
•  Columns to variables (a.k.a. features, measurements). Can have 

different data types, units.
•  “Tidy data”: https://r4ds.had.co.nz/tidy-data.html
•  R: data.frame
•  Python: Pandas DataFrame; 
•  SQL: table
•  CSV file
•  Excel: sheet (…)

• Special case: matrix—all variables have same data type & units

https://r4ds.had.co.nz/tidy-data.html


Motor cars

• mtcars dataset comes from1974 Motor Trend US magazine and comprises multiple 
aspects of automobile design and performance for 32 automobiles.

• The data contains categorical and continuous variables in various units.

                   mpg cyl disp  hp drat    wt  qsec vs am gear carb

Mazda RX4         21 6 160 110 3,9 2,62 16,46 0 1 4 4

Mazda RX4 Wag     21 6 160 110 3,9 2,875 17,02 0 1 4 4

Datsun710        22,8 4 108 93 3,85 2,32 18,61 1 1 4 1

Hornet 4 Drive    21,4 6 258 110 3,08 3,215 19,44 1 0 3 1

Hornet Sportabout 18,7 8 360 175 3,15 3,44 17,02 0 0 3 2

Valiant           18,1 6 225 105 2,76 3,46 20,22 1 0 3 1



Turtles

•Three dimensions of biometric measurements on painted 
turtles (Jolicoeur, 1960) 



Athletes (Decathlon)
Athletes’ performances in the decathlon
•m100, m400, m1500: performance times in seconds for 100 m, 400 m and 1500 

m respectively
• ‘m110’ is the time taken to finish the 110 m hurdles
• pole is the pole-jump height
•weight is the length in metres the athletes threw the weight.



Diabetes
•Collected by Reaven and Miller (1979) to study the relationship among blood chemistry 

measures of glucose tolerance and insulin.

•Glucose levels in the blood after fasting (`glufast`), after a test condition (`glutest`), steady 
state plasma glucose (`steady`) and steady state insulin (`insulin`) for 145 non-obese adults.

• The last variable is a categorical, indicating diagnostic group membership:  
             1=overt diabetic,         2=chemical diabetic,         3=normal

diabetes

##   relwt glufast glutest steady insulin Group

## 1 0,81 80 356 124 55 3

## 3 0,94 105 319 143 105 3

## 5 1 90 323 240 143 3

## 7 0,91 100 350 221 119 3



Microbial ecology
•Microbial species abundances are estimated using sequencing.

•Data are aggregated as a matrix of read counts:

•Columns represent different bacterial species (or seq. variants),

•  Rows correspond to samples that were sequenced,

•  Entries are integers representing the number times a specific bacterial species was 
observed in each of the samples. 

`GlobalPatterns` Microbial Abundance Data

##         246140 143239 244960 255340 144887 141782 215972 31759

## CL3     0 7 0 153 3 9 0 0

## CC1     0 1 0 194 5 35 3 1

## SV1     0 0 0 0 0 0 0 0

## M31Fcsw 0 0 0 0 0 0 0 0



RNA-seq Expression Data

• RNA-Seq transcriptome data report the number of sequence reads matching each gene in each of several 
biological samples.

                   FBgn0000017 FBgn0000018 FBgn0000022 FBgn0000024 FBgn0000028 FBgn0000032

        untreated1 4664 583 0 10 0 1446

        untreated2 8714 761 1 11 1 1713

        untreated4 3150 310 0 3 0 672

        treated1   6205 722 0 10 0 1698

        treated3   3334 308 0 5 1 757

integers



Graphical Exploration
Always start with visual exploration
• Heatmap
• Pairs Plots
Book chapter https://www.huber.embl.de/msmb/03-chap.html 
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ggally::ggpairs()



Data preprocessing
The problem: different variables are usually not comparable  
       (length in m, loudness in dB, cost in hryvnia, …)

Potential remedies:
• Transformation: logarithm, power (e.g.: weight vs linear size)
• Centering (translation): subtract mean, median
• Scaling: divide by range (max-min, standard deviation, …)

Making these choices is a bit of an art. No hard rules. Key: be 
transparent, reproducible, avoid “p-value hacking”



Dimensionality Reduction

1080 ~ number of particles in the universe 



Why reduce dimensions?

•Recall the turtles data.  
Let’s make a pairs plot!
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Why reduce dimensions?

•Recall the turtles data.  
Let’s make a pairs plot!

All three of the variables are 
highly correlated and mostly 
reflect the same “underlying” 
variable, which we might 
interprete as the size of the 
turtle.



Why reduce dimensions?

•Recall the athletes (decathlon) data. 
Look at all pairwise correlations — 
here we show them as a heatmap.



Why reduce dimensions?

•Recall the athletes (decathlon) data. 
Look at all pairwise correlations — 
here we show them as a heatmap.

The 10 variables cluster in two 
or three correlated blocks - 4 for 
“running”, 4 for “throwing things” 
and 3 for “jumping”. We might 
interpret these as underlying 
“latent factors”



•Many biological datasets are high- 
dimensional. Some also contain  
substantial measurement 
noise.  

• Low-dimensional manifold hypo- 
thesis: the underlying dynamics or 
variation depends on much fewer, truly important variables, which we do not 
observe directly, but whose downstream effects we see.

•Utility:

• Compress the data
• Increase interpretability
• Reduce noise
• Simplify computations, increase (ML) model identifiability

Why reduce dimensions?





•Find “reasonable” (linear, smooth, …) 
 mathematical functions that map  
(data) points from the original high- 
dimensional space into lower 
dimensions (e.g., 2D screen)
•This may be called “unsupervised  

learning”: infer latent (hidden) 
variables from “unlabeled” data.
•  Prototypical version: Principal Component Analysis (PCA)

How to reduce dimensions?



History of PCA

•PCA was invented in 1901 by Karl Pearson as a way to  
reduce a two-variable scatterplot to a single coordinate. 

• It was again independently developed by Harold Hotelling  
in the1930s. Statisticians used it to summarize a battery 
of psychological tests run on the same subjects, by 
constructing overall scores that summarize many variables 
at once. 

• This idea of principal scores inspired the name Principal  
Component Analysis.

Karl Pearson

Harold Hotelling



Projecting 2D-data on a line

• In general, dimension reduction implies that we lose information. 

•Our goal is to keep as much information as possible.

•We can use this to choose among the many ways to project a 
point cloud on a line (1D), plane (2D), etc.
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Projecting 2D-data on a line

• In general, dimension reduction implies that we lose information. 

•Our goal is to keep as much information as possible.

•We can use this to choose among the many ways to project a 
point cloud on a line (1D), plane (2D), etc.

If we just project on some of the original 
coordinate axes, for instance the x-axis, we lose all 
of its information about the other(s).



Regression Line
•One of the most widely known method of projecting 2D data on a line is 

regression. 

•Regressing y variable on x variable minimizes the vertical distances (red bars)

• Linear regression is a supervised method that gives preference minimizing 
the residual sum of squares in one direction (direction of the response variable).

yi = a + bxi + εi

∑
i

ε2
i → min

y

x



Of course we can also regress in another direction, i.e., regress x on y:

y

x

xi = a + byi + εi

∑
i

ε2
i → min

Regression Line



Principal Component Line 

• Line minimizing error in both 
horizontal and vertical directions 

•We are in fact minimizing the 
diagonal projections onto the line 
from each point



Pythagoras’ theorem

•Total variance: sum of squares of the distance of the points to the center of the point cloud 

• This is also called the inertia of the point cloud. It can be decomposed into the sum of 
the squares of the projections onto the line plus the variances along that line. 

• For a given point cloud, minimizing the projection distances is equivalent maximizing the 
variance along that line. We can use either criterion to define the first principal component.



Linear Combinations

• The PC line we found in the previous section could be written

• Principal components are linear combinations of variables that were originally 
measured, they provide a new coordinate system. 

• This is analogous to what you do when. making a healthy juice mix, you can follow a recipe.

PC = 1
2
x + 1

2
y

The above recipe is a linear combination of individual ingredients. 

The juice mix PC would be a new variable, with coefficients (2,1, 0.5,0.5,0.02,0.25) for each original ingredient, called loadings.



Optimal Line 

Source 
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
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Source 
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Optimal Line 

• In higher dimensions (> 2), a linear combination of variables still defines a line.

•  As before, there are many ways to choose lines onto which we project the data.

• In PCA, we use the fact that the total sums of squares of the distances between the points 
and the origin can be decomposed into the distance to the line and the variance 
along the line.

•We saw that the principal component minimizes the distance to the line, and it also 
maximizes the variance of the projections along  the line.

•Why is this a good idea? Let’s look at another example of a projection from 3D to 2D,  
demonstrating what happens in human vision



Good Projections

•What is this?

Mystery Image



Good Projections

•Which projection do you think is better?

• It’s the projection that maximizes the area of the shadow. An equivalent criterion is the sums of 
squares of the distances between points in the projection: we want to see as much of the variation as 
possible. That’s what PCA does.



PCA of the turtles data



PCA of the athletes data



How does it work?
• First PC accounts for as much of the variance as possible. Then iterate: each successive 

PC explains the highest remaining variance possible under the constraint that it’s 
orthogonal to the preceding ones.

• Solution can computed rapidly and exactly 
using basic linear algebra: Singular Value 
Decomposition (SVD), Matrix Diagonalization 
(eigenvectors ).

• See MSMB book (or many other textbooks).



Running PCA in R



• This dataset contains chemical measurements on different wines.

• We also have a information the class of wine each one belongs to, but 
we will not use it for any computations, just for results interpretation 
after completing the analysis.

• If you ever want to hear a dinner table-appropriate explanation of PCA, I 
highly recommend looking up this stats-stackexchange post which is 
also about wines!       

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-
eigenvectors-eigenvalues

Wine Dataset

  Alcohol MalicAcid  Ash AlcAsh  Mg Phenols Flav NonFlav
Phenols 

Proa Color  Hue   OD Proline

1 14,23 1,71 2,43 15,6 127 2,8 3,06 0,28 2,29 5,64 1,04 3,92 1065
2 13,2 1,78 2,14 11,2 100 2,65 2,76 0,26 1,28 4,38 1,05 3,4 1050
3 13,16 2,36 2,67 18,6 101 2,8 3,24 0,3 2,81 5,68 1,03 3,17 1185
4 14,37 1,95 2,5 16,8 113 3,85 3,49 0,24 2,18 7,8 0,86 3,45 1480
5 13,24 2,59 2,87 21 118 2,8 2,69 0,39 1,82 4,32 1,04 2,93 735
6 14,2 1,76 2,45 15,2 112 3,27 3,39 0,34 1,97 6,75 1,05 2,85 1450

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues


Center and Scale the Data



2D summaries





Use R functions to compute PCA
• To compute PCA in R, you can use any of the following functions: princomp, 
prcomp, ade4::dudi.pca or even svd 

•Here we will use dudi.pca from ade4 package, for others see the textbook.

•Note that, there is no need to center and scale the data ahead of time!

•Note that we set nf = 5, that is we only retain 5 PCs. The rest will not be included in the result.

• The output of dudi.pca() is of class both “pca” and “dudi”, but is basically a list containing 
many elements

• scan = FALSE surpasses automatic printing of the the screeplot



Elements of the Output

tab the data frame to be analyzed depending of the transformation arguments (center 
and scale)

cw the column weights
lw the row weights
eig the eigenvalues
rank the rank of the analyzed matrice
nf the number of kept factors
c1 the column normed scores i.e. the principal axes
l1 the row normed scores
co the column coordinates
li the row coordinates i.e. the principal components
call the call function
cent the p vector containing the means for variables (Note that if center = F, the vector 

contains p 0)
norm the p vector containing the standard deviations for variables i.e. the root of the 

sum of squares deviations of the values from their means divided by n (Note that if 
norm = F, the vector contains p 1)



Scree Plot



Sample Projection



Sample Projection with Coloring by Covariates



Including Ellipses



Sample Projection on Other Axes



Correlation Circle for Variables



Variable Contribution to PCs
•Contribution is the  squared correlation of the variable to the dimension 

divided by the sum of squared correlations for all variables.

The red dashed line on the graph above indicates the expected average contribution, as if 
the contribution of the variables was even.



Variable Contribution to PCs

The red dashed line on the graph above indicates the expected average contribution, as if 
the contribution of the variables was even.



PCA Biplot with Everything Together



Further Reading

• The best way to deepen your understanding of SVD is to read Chapter 7 
of Strang (2009).

•Complete textbook on PCA and related method, Mardia, Kent, and Bibby (1979), 
is a standard text that covers all multivariate methods in a classical way, with 
linear algebra and matrices. 

• Jolliffe (2002) is a booklong treatment of everything to do with PCA with extensive 
examples.

•Multi-dimensional scaling, t-SNE, UMAP; autoencoders.

•Chapter 14 of the The Elements (Hastie, Tibshirani, Friedmann) 


