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What is multivariate analysis!

® Many studies collect information on multiple variables repeated for each observation.

® Modern datasets are often high-dimensional, with thousands to millions of variables
(“dimensions”) per sample.

o Multivariate Analysis I1s an umbrella term for technigues to analyze more than one variable
at a time. [t encompasses many statistical methods:

o PCA,

e Correspondence Analysis,

® Factor Analysis,
e Multidimensional Scaling, t-SNE, UMAR ...

e Autoencoders

and many others.



Why do you need
multivariate
analysis?

In a lot of cases, you are not
interested in how a single
variable behaves on its own, but
how all variables or a group of
variables behave together
jointly or how they affect each
other.

sepal_length
(=] |

sepal_width

petal_length
(N] w - &)

petal_width

sepal_length sepal_width petal_length petal_width




Goals for this lecture

® See examples of multivariate data coming up In biological studies and others.
® | carn how to preprocess, center and rescale data before the analysis.

e Understand the importance of correlations between variables.

® Recognize why dimensionality reduction is useful.

® Build new variables, called principal components (PC), that are more useful than the original
measurements.

® See what is “under the hood” of PCA and learn how to choose the number of principal components.
® Generate helpful visualizations of PCA results.

® Run through a complete PCA analysis from start to finish.
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Data format

® Datasets can often be organized as a rectangular table.

* Rows correspond to experimental or study units (e.g., environmental
sample, patient biopsy, customer order), and

e Columns to variables (a.k.a. features, measurements). Can have
different data types, units.

e “Tidy data”: https://r4ds.had.co.nz/tidy-data.html

e R:data.frame

e Python: Pandas DataFrame;
e SQL: table

o CSV file

e Excel: sheet(...)

e Special case: matrix—all variables have same data type & units



https://r4ds.had.co.nz/tidy-data.html

Motor cars

® mtcars dataset comes from|9/74 Motor Irend US magazine and comprises multiple
aspects of automobile design and performance for 32 automoblles.

® [he data contains categorical and continuous variables in various units.

head(mtcars)

mpg cyl disp hp drat wt qgsec vs am gear carb

Mazda RX4
Mazda RX4 Wag
Datsun710

Hornet 4 Drive

Hornet Sportabout 18,7 360 175 3,15 3,44 17,02 O

225 105 2,76 3,46 20,22 1

& 00 o H~ O
© O O
W0 W W ~ B

Valiant 18,1




Turtles

* Three dimensions of biometric measurements on painted
turtles (Jolicoeur, 1960)

turtles|[1l:4,]

## sex length width height

## 1 f 98 81 38
## 2 f 103 84 38
## 3 f 103 86 42
## 4 f 105 86 40



Athletes (Decathlon)

Athletes’ performances in the decathlon

* m100, m400, m1500: performance times in seconds for 100 m, 400 m and 1500
m respectively

* ‘'m110’ is the time taken to finish the 110 m hurdles

* pole Is the pole-jump height

e weight is the length in metres the athletes threw the weight.

mI00 long weight highj m400 ml 10 disc pole jave mi500
| 1125 743 1548 227 4890 15.13 49.28 4.70 61.32 268.95
2 1087 745 1497 197 4771 1446 4436 5.10 61.76 273.02
3 11.18 744 1420 1.97 4829 1481 43.66 5.20 64.16 263.20
4 1062 738 1502 203 49.06 14.72 4480 4.90 64.04 285.11



Diabetes

o Collected by Reaven and Miller (19/9) to study the relationship among blood chemistry

measures of glucose tolerance and In

® Glucose levels In the blood after fasti
state plasma glucose (‘steady ') and s

sulin.

ng (“glufast’), af

‘er a test conditior

‘eady state Insu

diabetes

glutest

in ("Insulin’) for 145 non-o

(‘glutes

), steady

® [he last variable is a categorical, Indicating diagnostic group membership:
| =overt diabetic, 2=chemical diabetic, 3=norma

Group

hese adults.

glufast
#H W 0,81 80
## B 0,94 105
## B 1 90

## 0,91 100

356

319

323

350

steady insulin
124 55
143 105
240 143
221 119



Microbial ecology

® Microbial species abundances are estimated using sequencing.

® Data are aggregated as a matrix of read counts:
e Columns represent different bacterial species (or seq. variants),

® Rows correspond to samples that were sequenced,

® [ntries are integers representing the number times a specific bacterial species was
observed In each of the samples.

data("GlobalPatterns"”, package = "phyloseq")
GPOTUs = as.matrix(t(phyloseq::otu table(GlobalPatterns)))
GPOTUs[1l:4, 6:13]

‘GlobalPatterns Microbial Abundance Data

246140143239 244960 255340 144887 141782215972 31759

28 CL3 0 / 0 153 3 9 0 0
a8 CCT 0 1 0 194 5 35 3 1
## ES\A 0 0 0 0 0 0 0 0
2 MM31Fcsw O 0 0 0 0 0 0 0



biological samples.

FBgn0000017

RNA-seq Expression Data

RNA-5eq transcriptome data report the number of sequence reads matching each gene in each of several

FBgn0000018

FBgn0000022 FBgn0000024 FBgn0000028 FBgn0000032

untreatedi

untreated?2

untreated4

treatedi

treated3

4664 583 10 1446
8714 761 1 11 1 1713
3150 310 0 3 0 672
6205 722 0 10 0 1698
3334 308 0 5 1 757

integers



Graphical Exploration

Always start with visual exploration
e Heatmap
e Pairs Plots

Book chapter https://www.huber.embl.de/msmb/03-chap.html

Anderson's Iris Data —— 3 species
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https://www.huber.embl.de/msmb/03-chap.html

library(dplyr)
library(GGally)
my mtcars <- select(mtcars, mpg, wt, gsec)

ggpairs(my mtcars)

ggally::ggpairs()

my mtcars <- select(mtcars, mpg, wt, gsec, cyl, gear, am) 3%>%

mutate(cyl

= factor(cyl), gear = factor(gear), am = factor(am))

ggpairs(my mtcars, aes(color = cyl))
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Data preprocessing

The problem: different variables are usually not comparable
(length in m, loudness in dB, cost in hryvnia, ...)

Potential remedies:

 Transformation: logarithm, power (e.g.: weight vs linear size)
e Centering (translation): subtract mean, median

e Scaling: divide by range (max-min, standard deviation, ...)

Making these choices is a bit of an art. No hard rules. Key: be
transparent, reproducible, avoid “p-value hacking”



1080 ~ number of particles in the universe

Dimensionality Reduction



Why reduce dimensions?

e Recall the turtles data.
Let’s make a pairs plot!



Why reduce dimensions?

length width
e Recall the turtles data.
Let’s make a pairs plot!
corr:
0.978™"

yibus

IpIM
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Why reduce dimensions?

e Recall the turtles data.
Let’s make a pairs plot!

All three of the variables are
highly correlated and mostly
reflect the same “underlying”
variable, which we might
interprete as the size of the
turtle.

length

width

Corr:
0.978™""

height

Corr:

0.965™""

Corr:

0.961™""

yibus

HIPIM

1ybiray



Why reduce dimensions?

* Recall the athletes (decathlon) data.
Look at all pairwise correlations —
here we show them as a heatmap.

m100

m110
m400
m1500
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Why reduce dimensions?

* Recall the athletes (decathlon) data.
Look at all pairwise correlations —
here we show them as a heatmap.

m100

m110

m400
m1500

The 10 variables cluster in two
or three correlated blocks - 4 for
“‘running”, 4 for “throwing things”
and 3 for “jlumping”. We might
interpret these as underlying
“latent factors”
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Why reduce dimensions?

* Many biological datasets are high-
dimensional. Some also contain
substantial measurement
noise.

e | ow-dimensional manifold hypo-
thesis: the underlying dynamics or 7
variation depends on much fewer, truly important varlables which we do not
observe directly, but whose downstream effects we see.

o Utility:

e Compress the data

e |ncrease interpretabllity

e Reduce noise

e Simplify computations, increase (ML) model identifiability
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e Find “reasonable” (linear, smooth, ...) &
mathematical functions that map
(data) points from the original high-
dimensional space into lower
dimensions (e.g., 2D screen)

* This may be called “unsupervised
learning”: infer latent (hidden)
variables from “unlabeled” data.

e Prototypical version: Principal Component Analysis (PCA)



History of PCA

e PCA was invented in 1901 by Karl Pearson as a way to
reduce a two-variable scatterplot to a single coordinate.

* [t was again independently developed by Harold Hotelling
in the1930s. Statisticians used it to summarize a battery ;
of psychological tests run on the same subjects, by el Pearson
constructing overall scores that summarize many variables

at once.

* This idea of principal scores inspired the name Principal
Component Analysis.

Harold Hotelling



Projecting 2D-data on a line

® |[n general, dimension reduction implies that we lose information.

® Our goal Is to keep as much information as possible.

® \\Ve can use this to choose among the many ways to project a
point cloud on a line (1D), plane (2D), etc.




Projecting 2D-data on a line
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(defined by ¥y = 0) in red and the lines of
projection appear as dashed.



Projecting 2D-data on a line
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Regression Line

* One of the most widely known method of projecting 2D data on a line is
regression.

* Regressing y variable on x variable minimizes the vertical distances (red bars)

e Linear regression is a supervised method that gives preference minimizing
the residual sum of squares in one direction (direction of the response variable).

2- ®

y, =a+ bx; + € i

) & — min

i R




Regression Line

Of course we can also regress in another direction, i.e., regress x on y:




Principal Component Line

® | ine minimizing error in both
horizontal and vertical directions

® \We are In fact minimizing the 1-
diagonal projections onto the line
: 0 - -
from each point :
1
-2 -
1 X
. BT -3 2 1
N e —
ELJ 0




Pythagoras’ theorem

e Total variance: sum of squares of the distance of the points to the center of the point cloud

® [his is also called the inertia of the point cloud. [t can be decomposed into the sum of
the squares of the projections onto the line plus the variances along that line.

® For a given point cloud, minimizing the projection distances is equivalent maximizing the
variance along that line.VWe can use either criterion to define the first principal component.

datapoint
2 2 2
D, = D; + D,
O(\eo’f,.
s initial _ remaining 4 lost
oot variance variance variance
projected > 2 o
lal*= [[wc|{+[|a,-wc||
| | | |
this is maximize minimize

constant this or this




Linear Combinations

e [he PC line we found in the previous section could be written  PC = lx+ ly

2 2

® Principal components are linear combinations of variables that were originally
measured, they provide a new coordinate system.

® [his Is analogous to what you do when. making a healthy juice mix, you can follow a recipe.

1 1
V =2 X Beets + 1 X Carrots + 3 Gala + 5 GrannySmith + 0.02 X Ginger + 0.25 Lemon

ingredients

» 2 pounds beets (about 6 medium), trimmed, peeled, cut into 1" pieces
» 1 pound carrots (about 4 large), trimmed, peeled, cut into 1" pieces

» 1 Gala or Empire apple (about 8 ounces), cored, cut into 1" pieces

» 1 Granny smith apple (about 8 ounces), cored, cut into 1" pieces

» 13" piece fresh ginger, peeled, chopped into 1" pieces

» 3 tablespoons fresh lemon juice

The above recipe Is a linear combination of individual ingredients.

The juice mix PC would be a new variable, with coefficients (2,1, 0.5,0.5,0.02,0.25) for each original ingredient, called loadings.



Optimal Line
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

Optimal Line
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

Optimal Line

® In higher dmensions (> 2), a linear combination of variables still defines a line.
® As before, there are many ways to choose lines onto which we project the data.

o |n PCA, we use the fact that the total sums of squares of the distances between the points
and the origin can be decomposed into the distance to the line and the variance
along the line.

® \WWe saw that the principal component minimizes the distance to the line, and it also
maximizes the variance of the projections along the line.

® Why is this a good idea? Let's look at another example of a projection from 3D to 2D,
demonstrating what happens in human vision



Good Projections

® \\Vhat Is this/

Mystery Image



Good Projections

® \Which projection do you think Is better?

* [t's the projection that maximizes the area of the shadow. An equivalent criterion Is the sums of
squares of the distances between points In the projection: we want to see as much of the variation as
possible. That’'s what PCA does.
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PCA of the athletes data
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How does it work!?

® First PC accounts for as much of the variance as possible. [hen rterate: each successive
PC explains the highest remaining variance possible under the constraint that it's
orthogonal to the preceding ones.

® Solution can computed rapidly and exactly
using basic linear algebra: Singular Value
Decomposition (SVD), Matrix Diagonalization
(elgenvectors ).

® See MSMB book (or many other textbooks).




Running PCA in R



Wine Dataset

® [his dataset contains chemical measurements on different wines.

® \We also have a information the class of wine each one belongs to, but
we will not use 1t for any computations, just for results interpretation

ﬁ

after completing the analysis.

® |f you ever want to hear a dinner table-appropriate explanation of PCA, |
nighly recommend looking up this stats-stackexchange post which s

also about wines!

https://stats.stackexchange.com/questions/269 | /making-sense-of-principal-component-analysis-
eigenvectors-eigenvalues

NonFlav

Alcohol MalicAcid Ash AlcAsh Mg Phenols Flav Phenols Proa Color Hue OD Proline

il 1423 1,71 2,43 156 127 2,8 3,06 0,28 2,29 564 1,04 3,92 1065
71 132 1,78 2,14 11,2 100 2,65 2,76 0,26 1,28 4,38 1,05 3,4 1050
<] 13,16 2,36 2,67 18,6 101 2,8 324 03 281 568 1,03 3,17 1185 N —
Y1437 1,95 25 168 113 3,85 3,49 024 2,18 7,8 0,86 3,45 1480 N () @R ()
] 1324 259 2,87 21 118 2,8 2,69 0,39 1,82 4,32 1,04 2,93 735 \ff/ \\f/ \1 \Y/
G 142 1,76 2,45 152 112 3,27 3,39 0,34 1,97 6,75 1,05 2,85 1450 o T TR TS



https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

Center and Scale the Data

load("wine.RData")

apply(wine, 2, mean)

## Alcohol MalicAcid Ash AlcAsh Mg
## 13.0006180 2.3363483 2.3665169 19.4949438 99.7415730
## Phenols FFlav NonFlavPhenols Proa Color
## 2.2951124 2.0292697 0.3618539 1.5908989 5.0580899
e Hue oD Proline

## 0.9574494 2.6116854 746.8932584

apply(wine, 2, sd)

## Alcohol MalicAcid Ash AlcAsh Mg
e 0.8118265 1.1171461 0.2743440 3.3395638 14.2824835
i Phencols Flav NonFlavPhenols Proa Color
## 0.6258510 0.9988587 0.1244533 0.5723589 2.3182859
## Hue oD Proline

## 0.2285716 0.7099904 314.9074743

wine scaled = scale(wine)

apply(wine_scaled, 2, mean)

## Alcohol MalicAcid Ash AlcAsh Mg
## -8.591766e-16 -6.776446e-17 B.045176e-16 -7.720494e-17 -4.073935e-17
Phenols Flav NonFlavPhencls Proa Color
6.958263e~-17 -1.042186e-16 =1.221369%9e-16 3.649376e-17

Proline
-1.034429e-16

Eue oD

##
## =1.395560e-17
#H#
## 3.003459%e-16

2.093741e-16

apply(wine scaled, 2, sd)

# Alcohol MalicAcid Ash AlcAsh Mg
# 1 1 1 1 1
## Phenols Flav NonFlavPhenols Proa Color
# 1 1 1 1 1
## Hue oD Proline
## 1 1 1



OO0 00

2D summaries

wine scaled <- as.data.frame(wine scaled)

GGally: :ggpairs(wine scaled)
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library(pheatmap)

pheatmap(l - cor(wine))
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Use R functions to compute PCA

® [o compute PCA In R, you can use any of the following functions: princomp,

S

rcomp, ade4d::dudi.pca oreven svd

® Here we will use dudi.pca from ade4d package, for others see the textbook.

e Note that, there i1s no need to center and scale the data ahead of time!

N

library(ade4)
winePCA = dudi.pca(wine, nf = 5, scale = TRUE, center = TRUE, scannf=FALSE)

class(winePCA)
## [1] "pca" "dudi”
names (winePCA)

## [1] lltab" llcw" "lwll "eig" "rankll "nf" Ilclll lllill llcol’ llllll
## [11] "call" "cent" "norm"

ote that we set nf = 5, that is we only retain 5 PCs. The rest will not be included in the result.

° [

ne output of dudi.pca() Is of class both “pca” and “dudi”, but Is basically a list containing

many elements

® scan = FALSE surpasses automatic printing of the the screeplot



Elements of the Output

names (winePCA)

## [1] lltabll Ilcwll lllwll lleigll llrank" llnfll llclll "li" Ilcoll "ll"

## [11] "call" "cent" "norm"

tab the data frame to be analyzed depending of the transformation arguments (center
and scale)

CW the column weights

[w the row weights

eig the eigenvalues

rank the rank of the analyzed matrice

Nt the number of kept factors

cl the column normed scores I.e. the principal axes

|| the row normed scores

co the column coordinates

li the row coordinates i.e. the principal components

call the call function

cent the p vector containing the means for variables (Note that If center = F, the vector
contains p 0)

norm the p vector containing the standard deviations for variables 1.e. the root of the

sum of squares deviations of the values from their means divided by n (Note that if
norm = F the vector contains p 1)



library(factoextra)
fviz eig(winePCA)

Scree plot

Percentage of explained variances

Scree Plot
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Sample Projection

fviz pca ind(winePCA) +
coord fixed()

Individuals - PCA
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Sample Projection with Coloring by Covariates

load("wineClass.RData")
table(wine.class)

## wine.class
## barolo grignolino barbera
## 59 71 48

fviz_pca_ind(winePCA, col.ind = wine.class,
palette = c("#E41A1C", "#377EB8", "#4DAF4A")) +
coord fixed()

Individuals - PCA
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Including Ellipses

fviz pca ind(winePCA, col.ind = wine.class,
palette = c("#E41A1C", "#377EB8", "#4DAF4A"),
R

coord_fixed()

Individuals - PCA
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Sample Projection on Other Axes

fviz_pca_ind(winePCA, axes = 2:3, col.ind = wine.class,
palette = c("#E41AlC", "#377EB8", "#4DAF4A")) +
coord fixed()

Individuals - PCA
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Correlation Circle for Variables

fviz pca var(winePCA)

Variables - PCA
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Variable Contribution to PCs

e Contribution Is the squared correlation of the variable to the dimension
divided by the sum of squared correlations for all variables.

fviz contrib(winePCA, choice = "var", axes = 1)

fviz contrib(winePCA, choice = "var", axes = 2)

Contribution of variables to Dim-2

Contribution of variables to Dim-1
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The red dashed line on the graph above indicates the expected average contribution, as If
the contribution of the variables was even.



Variable Contribution to PCs

fviz contrib(winePCA, choice = "var", axes = 1:2)

Contribution of variables to Dim-1-2
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The red dashed line on the graph above indicates the expected average contribution, as If
the contribution of the variables was even.



PCA Biplot with Everything Together

fviz pca biplot(
winePCA, geom = "point"”,
col.ind = wine.class,
col.var = "#c07d44",
addEllipses = TRUE, ellipse.level = 0.7) +
coord fixed() +
scale color brewer(palette = "Setl")

PCA - Biplot
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Further Reading

* The best way to deepen your understanding of SVD is to read Chapter 7
of Strang (2009).

e Complete textbook on PCA and related method, Mardia, Kent, and Bibby (1979),
IS a standard text that covers all multivariate methods in a classical way, with
linear algebra and matrices.

o Jolliffe (2002) is a booklong treatment of everything to do with PCA with extensive
examples.

* Multi-dimensional scaling, t-SNE, UMAP; autoencoders.
e Chapter 14 of the The Elements (Hastie, Tibshirani, Friedmann)



