Last updated: 2023-01-12

Checks: 6 1

Knit directory: EMBL2016/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210512) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 12d1722. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.RData
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/CDK_analysis_cache/
    Ignored:    analysis/boxplot_AUC.png
    Ignored:    analysis/consensus_clustering_CPS_cache/
    Ignored:    analysis/consensus_clustering_noFit_cache/
    Ignored:    analysis/dose_curve.png
    Ignored:    analysis/targetDist.png
    Ignored:    analysis/toxivity_box.png
    Ignored:    analysis/volcano.png
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  analysis/AUC_CLL_IC50/
    Untracked:  analysis/BRAF_analysis.Rmd
    Untracked:  analysis/CDK_analysis.Rmd
    Untracked:  analysis/GSVA_analysis.Rmd
    Untracked:  analysis/MOFA_analysis.Rmd
    Untracked:  analysis/NOTCH1_signature.Rmd
    Untracked:  analysis/autoluminescence.Rmd
    Untracked:  analysis/bar_plot_mixed_noU1.pdf
    Untracked:  analysis/beatAML/
    Untracked:  analysis/consensus_clustering.Rmd
    Untracked:  analysis/consensus_clustering_CPS.Rmd
    Untracked:  analysis/consensus_clustering_IC50.Rmd
    Untracked:  analysis/consensus_clustering_beatAML.Rmd
    Untracked:  analysis/consensus_clustering_noFit.Rmd
    Untracked:  analysis/coxResTab.RData
    Untracked:  analysis/disease_specific.Rmd
    Untracked:  analysis/drugScreens_reproducibility.Rmd
    Untracked:  analysis/genomic_association.Rmd
    Untracked:  analysis/genomic_association_IC50.Rmd
    Untracked:  analysis/genomic_association_allDisease.Rmd
    Untracked:  analysis/noFit_CLL/
    Untracked:  analysis/outcome_associations.Rmd
    Untracked:  analysis/overview.Rmd
    Untracked:  analysis/plotCohort.Rmd
    Untracked:  analysis/preprocess.Rmd
    Untracked:  analysis/volcano_drugGene.pdf
    Untracked:  code/utils.R
    Untracked:  data/BeatAML_Waves1_2/
    Untracked:  data/ic50Tab.RData
    Untracked:  data/newEMBL_20210806.RData
    Untracked:  data/patMeta.RData
    Untracked:  data/targetAnnotation_all.csv
    Untracked:  output/gene_associations/
    Untracked:  output/mofaRes.rds
    Untracked:  output/resConsClust.RData
    Untracked:  output/resConsClust_aucFit.RData
    Untracked:  output/resConsClust_beatAML.RData
    Untracked:  output/resConsClust_cps.RData
    Untracked:  output/resConsClust_ic50.RData
    Untracked:  output/resConsClust_noFit.RData
    Untracked:  output/screenData.RData

Unstaged changes:
    Modified:   _workflowr.yml
    Modified:   analysis/_site.yml
    Deleted:    analysis/about.Rmd
    Modified:   analysis/index.Rmd
    Deleted:    analysis/license.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Load libraries and dataset

Load datasets

Overview of associations between drug responses and genomics in CLL

Using AUC of trepazoidal rule

Without blocking for IGHV

Only mutations occcured at least 5 times will be included in the test

Visualize the mean effect and variance of each drug

meanSdTab <- tibble(name = rownames(viabMat),
                    meanVal = rowMeans(viabMat, na.rm = TRUE),
                    sdVal = genefilter::rowSds(viabMat, na.rm=TRUE))

ggplot(meanSdTab, aes(x=meanVal, y=sdVal)) + geom_point()

Some drugs perhaps don’t have any effect at all and including them may increase multiple hypothesis testing burden, resulting less associations pass 10% FDR. There are perhaps two ways to deal with this: 1) prefiltering the drugs or using IHW and mean effect + sd as covariate.

Perform test

Adjust p-value use IHW, using standard deviation as covariate

ihwTab <- tibble(pval = pTab$p, name = pTab$drug) %>% 
  left_join(meanSdTab)
ihwRes <- ihw(pval ~ sdVal,  data = ihwTab, alpha = 0.1)
pTab$p.adj.ihw <- adj_pvalues(ihwRes)
#plot(ihwRes)

Write out test result table

write_csv2(pTab,"../docs/p_table_noBlock.csv")

p_table_noBlock.csv

Number of significant associations per gene (10% FDR)

Number of significant associations per gene (10% FDR), adjusted by IHW

Seems to help a little, especially with some each associations.

Perform test after pre-filtering non-effective drugs

#keepDrug <- filter(meanSdTab, meanVal < 0.9, sdVal > 0.05)$name #a rather arbitrary cutoff
viabMat.filt <- viabMat#[keepDrug, ]
pTab.filt <- lapply(colnames(geneBack), function(geneName) {
  var <- geneBack[,geneName, drop=FALSE]
  designMat <- model.matrix(~., data = var)
  testMat <- viabMat.filt[,rownames(designMat)]
  fit <- lmFit(testMat, designMat)
  fit2 <- eBayes(fit)
  res <- topTable(fit2, number = "all") %>%
    as_tibble(rownames = "drug") %>%
    mutate(gene = geneName) %>%
    select(drug, gene, P.Value, adj.P.Val, logFC, t) %>%
    dplyr::rename(p=P.Value, p.adj = adj.P.Val)
})  %>% bind_rows() %>%
  left_join(select(targetAnno, drugName, target, pathway, targetFamily), by = c( drug = "drugName"))

plotTab <- filter(pTab.filt, p.adj <= 0.1) %>% group_by(gene) %>%
  summarise(number = length(drug)) %>%
  arrange(desc(number)) %>% mutate(gene = factor(gene, levels = gene))

ggplot(plotTab, aes(x=gene, y = number, fill = gene)) + 
  geom_bar(stat = "identity", show.legend = FALSE) +
  geom_text(aes(label=number), position=position_dodge(width=0.9), vjust=-0.25) +
  theme_bw() + ggplot2::theme(axis.text.x = element_text(angle = 90, hjust =1, vjust = .5)) +
  xlab("Variant name") + ylab("Number of significant associations (10% FDR)")

May also help a little.

Without IHW

#pTab <- mutate(pTab, p.adj = p.adj.ihw)

P value scatter plot (only show drugs with assocations)

Associations pass 10% FDR are colored by genes.
Only a few associations pass the 10% FDR threshold, although many associations pass raw p-value 0.01 threshold. This could be due to the multiple hypothesis testing problem. We have more drugs in EMLB2016 screen than other screens. (I already pre-filtered the drugs that show very little variance across samples.)
PDF version: pScatter-1.pdf

Volcano plots (per gene)

#filter genes with significant assocaitions
useGene <- unique(filter(pTab, p.adj <=0.1)$gene)

#get top 10 most up and down regulated genes
upDrug <- lapply(unique(pTab$gene), function(n) {
  dplyr::filter(pTab, gene ==n, logFC >0) %>% top_n(10, -log10(p))
}) %>% bind_rows()

downDrug <- lapply(unique(pTab$gene), function(n) {
  dplyr::filter(pTab, gene == n, logFC  < 0) %>% top_n(10, -log10(p))
}) %>% bind_rows() 

drugLab <- bind_rows(upDrug, downDrug) %>%
  filter(p.adj <0.1) %>%
  mutate(drugLabel = drug) %>% select(drug, gene, drugLabel)

plotList <- lapply(useGene, function(n) {
  eachTab <- filter(pTab, gene %in% n, !is.na(p)) %>%
    mutate(direction = ifelse(p.adj > 0.1, "n.s.",
                              ifelse(logFC>0, "resistant","sensitive"))) %>%
    left_join(drugLab, by = c("drug", "gene"))
  
  #pCut <- -log10(max(filter(eachTab, p.adj <=0.1)$p))
  pCut <- -log10(0.1)
  ggplot(eachTab, aes(x=logFC, y = -log10(p.adj))) +
    geom_point(aes(col = direction)) +
    ggrepel::geom_text_repel(aes(label = drugLabel), max.overlaps = 100) +
    scale_color_manual(values = c("n.s."="grey60","resistant" = "red","sensitive" = "blue")) +
    geom_hline(yintercept = pCut, linetype = "dashed", color = "orange") +
    ylab("-log10(adjusted P value)") + xlab("log2(fold change)") +
    ggtitle(sprintf("%s (mutated vs unmutated)", n)) +
    theme_bw() +
    theme(plot.title = element_text(hjust=0.5, size=15, face ="bold"),
          legend.position = "bottom",
          axis.text = element_text(size=14),
          axis.title = element_text(size=14))
})
plot_grid(plotlist = plotList, ncol=2)

makepdf(plotList, "../docs/volcano_noBlocking.pdf", ncol=2, nrow=2, height = 10, width = 9)

PDF version: volcano_noBlocking.pdf

Volcano plots (per drug)

Only drugs with FDR < 0.1 with at least one gene

#filter genes with significant assocaitions
useDrug <- unique(filter(pTab, p.adj <= 0.1)$drug)


plotList <- lapply(useDrug, function(n) {
  eachTab <- filter(pTab, drug %in% n, !is.na(p)) %>%
    mutate(direction = ifelse(p.adj > 0.1, "n.s.",
                              ifelse(logFC>0, "resistant","sensitive"))) 
  
  #pCut <- -log10(max(filter(eachTab, p.adj <=0.1)$p))
  pCut <- 1
  
  ggplot(eachTab, aes(x=logFC, y = -log10(p.adj))) +
    geom_point(aes(col = direction)) +
    ggrepel::geom_text_repel(data = filter(eachTab, direction != "n.s."), aes(label = gene), max.overlaps = 100) +
    scale_color_manual(values = c("n.s."="grey60","resistant" = "red","sensitive" = "blue")) +
    geom_hline(yintercept = pCut, linetype = "dashed", color = "orange") +
    ylab("-log10(adjusted P value)") + xlab("log2(fold change)") +
    ggtitle(sprintf("%s", n)) +
    theme_bw() +
    theme(plot.title = element_text(hjust=0.5, size=15, face ="bold"),
          legend.position = "bottom",
          axis.text = element_text(size=14),
          axis.title = element_text(size=14))
})
#plot_grid(plotlist = plotList, ncol=2)
makepdf(plotList, "../docs/volcano_perDrug_noBlocking.pdf", ncol=2, nrow=2, height = 10, width = 9)

PDF version: volcano_perDrug_noBlocking.pdf

Volcano plots (drug+gene)

mutNum <- colSums(geneBack,na.rm=TRUE)
plotTab <- pTab %>% mutate(direction = ifelse(p.adj > 0.1, "n.s.",
                                              ifelse(logFC>0, "resistant","sensitive"))) %>%
  mutate(num = mutNum[gene]) %>%
  mutate(featureName = paste0(drug,"\n",gene))
labelFeature <- arrange(plotTab, t)$featureName[c(1:10, (nrow(plotTab)-9):nrow(plotTab))]
plotTab <- mutate(plotTab, ifLabel = featureName %in% labelFeature)
pCut <- 1

  
ggplot(plotTab, aes(x=logFC, y = -log10(p.adj))) +
  geom_point(aes(fill = direction, size = num), shape = 21, alpha=0.5) +
  ggrepel::geom_text_repel(data = filter(plotTab, ifLabel), 
                           aes(label = featureName),
                           max.overlaps = 100) +
  scale_fill_manual(values = c("n.s."="grey60","resistant" = "red","sensitive" = "blue")) +
  geom_hline(yintercept = pCut, linetype = "dashed", color = "orange") +
  ylab("-log10(adjusted P value)") + xlab("log2(fold change)") +
  theme_bw() +
  theme(plot.title = element_text(hjust=0.5, size=15, face ="bold"),
        legend.position = "bottom",
        axis.text = element_text(size=14),
        axis.title = element_text(size=14))

ggsave("../docs/volcano_drugGene.pdf", height = 10, width = 10)

Only top 10 most associations in each direction are labeled pdf file

Boxplots and dose-response curves per gene

pTab.sig <- filter(pTab, p.adj < 0.1)
if (!dir.exists("../output/gene_associations")) dir.create("../output/gene_associations")
plotList <- lapply(unique(pTab.sig$gene), function(n) {
  eachTab <- filter(pTab.sig, gene == n) 
  eachGenePlot <- lapply(seq(nrow(eachTab)), function(i) {
    rec <- eachTab[i,]
    plotTab <- filter(screenData, Drug == rec$drug, diagnosis =="CLL") %>%
      mutate(mut = factor(geneBack[match(patientID,rownames(geneBack)),][[rec$gene]])) %>%
      filter(!is.na(mut)) %>%
      group_by(patientID, conc, mut) %>%
      summarise(viab=mean(viab, na.rm=TRUE), viab.auc = mean(viab.auc,na.rm=TRUE)) %>%
      ungroup() %>% arrange(mut) %>% mutate(patientID = factor(patientID, levels = unique(patientID)))
      
    plotTab.auc <- distinct(plotTab, patientID, mut, viab.auc)
    
    pBox <- ggplot(plotTab.auc, aes(x=mut, y=viab.auc)) +
      geom_boxplot(outlier.shape = NA) +
      ggbeeswarm::geom_quasirandom(aes(col = mut)) +
      theme_bw() +ylab("Viability") + xlab("mutation status") +
      ggtitle(sprintf("%s (p.adj=%s)",rec$drug,formatC(rec$p.adj, digits = 2))) +
      theme(legend.position = "none")
    
    pDose <- ggplot(plotTab, aes(x=conc, y=viab, col = mut, group = patientID)) +
      geom_point() + geom_smooth(method="loess",se=FALSE, formula = y~x) +
      scale_x_log10() +
      theme_bw() +ylab("Viability") + xlab("concentration") +
      ggtitle(sprintf("%s, %s",rec$pathway,rec$targetFamily))
    
    pCom <- plot_grid(pBox, pDose, rel_widths = c(0.5,1))
    pCom
  })
  jyluMisc::makepdf(eachGenePlot , sprintf("../output/gene_associations/%s.pdf",n),ncol = 1,nrow = 4,width = 10, height = 12)
  NULL
})

Download link gene_associations.zip

A table of significant associations

filter(pTab, p.adj <=0.1) %>% mutate_if(is.numeric, formatC, digits=2) %>%
  DT::datatable()

Blocking for IGHV

p_table_blockIGHV.csv

Number of significant associations per gene (10% FDR)

Associations pass 10% FDR are colored by genes.

Number of significant associations per gene (10% FDR), adjusted by IHW

IHW does not help too much here.

Perform test after pre-filtering non-effective drugs

#keepDrug <- filter(meanSdTab, meanVal < 0.9, sdVal > 0.05)$name #a rather arbitrary cutoff
viabMat.filt <- viabMat#[keepDrug, ]
pTab.block.filt <- lapply(colnames(geneBack.noIGHV), function(geneName) {
  var <- geneBack[,c("IGHV.status",geneName), drop=FALSE]
  designMat <- model.matrix(~., data = var)
  testMat <- viabMat.filt[,rownames(designMat)]
  fit <- lmFit(testMat, designMat)
  fit2 <- eBayes(fit)
  res <- topTable(fit2, number = "all", coef = geneName) %>%
    as_tibble(rownames = "drug") %>%
    mutate(gene = geneName) %>%
    select(drug, gene, P.Value, adj.P.Val, logFC, t) %>%
    dplyr::rename(p=P.Value, p.adj = adj.P.Val)
})  %>% bind_rows() %>%
  left_join(select(targetAnno, drugName, target, pathway, targetFamily), by = c( drug = "drugName"))

plotTab <- filter(pTab.block.filt, p.adj <= 0.1) %>% group_by(gene) %>%
  summarise(number = length(drug)) %>%
  arrange(desc(number)) %>% mutate(gene = factor(gene, levels = gene))

ggplot(plotTab, aes(x=gene, y = number, fill = gene)) + 
  geom_bar(stat = "identity", show.legend = FALSE) +
  geom_text(aes(label=number), position=position_dodge(width=0.9), vjust=-0.25) +
  theme_bw() + ggplot2::theme(axis.text.x = element_text(angle = 90, hjust =1, vjust = .5)) +
  xlab("Variant name") + ylab("Number of significant associations (10% FDR)")

Pre-filtering actually is better here.

Number of significant associations per gene, blocking for non-IGHV features

Number of significant associations per gene, blocking for non-IGHV features, without U1

P value scatter plot (with pre-filtering)

pTab.block <- pTab.block.filt

PDF version: pScatter_aov-1.pdf

Volcano plots

#filter genes with significant assocaitions
useGene <- unique(filter(pTab.block, p.adj <=0.1)$gene)

#get top 10 most up and down regulated genes
upDrug <- lapply(unique(pTab.block$gene), function(n) {
  filter(pTab.block, gene ==n, logFC >0) %>% top_n(10, -log10(p))
}) %>% bind_rows()

downDrug <- lapply(unique(pTab.block$gene), function(n) {
  filter(pTab.block, gene == n, logFC  < 0) %>% top_n(10, -log10(p))
}) %>% bind_rows() 

drugLab <- bind_rows(upDrug, downDrug) %>%
  filter(p.adj <0.1) %>%
  mutate(drugLabel = drug) %>% select(drug, gene, drugLabel)

plotList <- lapply(useGene, function(n) {
  eachTab <- filter(pTab.block, gene %in% n, !is.na(p)) %>%
    mutate(direction = ifelse(p.adj > 0.1, "n.s.",
                              ifelse(logFC>0, "resistant","sensitive"))) %>%
    left_join(drugLab, by = c("drug", "gene"))
  
  #pCut <- -log10(max(filter(eachTab, p.adj <=0.1)$p))
  pCut <- -log10(0.1)
  ggplot(eachTab, aes(x=logFC, y = -log10(p.adj))) +
    geom_point(aes(col = direction)) +
    ggrepel::geom_text_repel(aes(label = drugLabel), max.overlaps = 100) +
    scale_color_manual(values = c("n.s."="grey60","resistant" = "red","sensitive" = "blue")) +
    geom_hline(yintercept = pCut, linetype = "dashed", color = "orange") +
    ylab("-log10(adjusted P value)") + xlab("log2(fold change)") +
    ggtitle(sprintf("%s (mutated vs unmutated)", n)) +
    theme_bw() +
    theme(plot.title = element_text(hjust=0.5, size=15, face ="bold"),
          legend.position = "bottom",
          axis.text = element_text(size=14),
          axis.title = element_text(size=14))
})
plot_grid(plotlist = plotList, ncol=2)

makepdf(plotList, "../docs/volcano_withBlocking.pdf", ncol=2, nrow=2, height = 10, width = 9)

PDF version: volcano_withBlocking.pdf

Volcano plots (per drug)

Only drugs with FDR < 0.1 with at least one gene

#filter genes with significant assocaitions
useDrug <- unique(filter(pTab.block, p.adj <= 0.1)$drug)


plotList <- lapply(useDrug, function(n) {
  eachTab <- filter(pTab.block, drug %in% n, !is.na(p)) %>%
    mutate(direction = ifelse(p.adj > 0.1, "n.s.",
                              ifelse(logFC>0, "resistant","sensitive"))) 
  
  #pCut <- -log10(max(filter(eachTab, p.adj <=0.1)$p))
  pCut <- 1
  
  ggplot(eachTab, aes(x=logFC, y = -log10(p.adj))) +
    geom_point(aes(col = direction)) +
    ggrepel::geom_text_repel(data = filter(eachTab, direction != "n.s."), aes(label = gene), max.overlaps = 100) +
    scale_color_manual(values = c("n.s."="grey60","resistant" = "red","sensitive" = "blue")) +
    geom_hline(yintercept = pCut, linetype = "dashed", color = "orange") +
    ylab("-log10(adjusted P value)") + xlab("log2(fold change)") +
    ggtitle(sprintf("%s", n)) +
    theme_bw() +
    theme(plot.title = element_text(hjust=0.5, size=15, face ="bold"),
          legend.position = "bottom",
          axis.text = element_text(size=14),
          axis.title = element_text(size=14))
})
#plot_grid(plotlist = plotList, ncol=2)
makepdf(plotList, "../docs/volcano_perDrug_withBlocking.pdf", ncol=2, nrow=2, height = 10, width = 9)

PDF version: volcano_perDrug_withBlocking.pdf

Volcano plots (drug+gene)

mutNum <- colSums(geneBack,na.rm=TRUE)
plotTab <- pTab.block %>% mutate(direction = ifelse(p.adj > 0.1, "n.s.",
                                              ifelse(logFC>0, "resistant","sensitive"))) %>%
  mutate(num = mutNum[gene]) %>%
  mutate(featureName = paste0(drug,"\n",gene))
labelFeature <- arrange(plotTab, t)$featureName[c(1:10, (nrow(plotTab)-9):nrow(plotTab))]
plotTab <- mutate(plotTab, ifLabel = featureName %in% labelFeature)
pCut <- 1

  
ggplot(plotTab, aes(x=logFC, y = -log10(p.adj))) +
  geom_point(aes(fill = direction, size = num), shape = 21, alpha=0.5) +
  ggrepel::geom_text_repel(data = filter(plotTab, ifLabel), 
                           aes(label = featureName),
                           max.overlaps = 100) +
  scale_fill_manual(values = c("n.s."="grey60","resistant" = "red","sensitive" = "blue")) +
  geom_hline(yintercept = pCut, linetype = "dashed", color = "orange") +
  ylab("-log10(adjusted P value)") + xlab("log2(fold change)") +
  theme_bw() +
  theme(plot.title = element_text(hjust=0.5, size=15, face ="bold"),
        legend.position = "bottom",
        axis.text = element_text(size=14),
        axis.title = element_text(size=14))

ggsave("../docs/volcano_drugGene_IGHVblocked.pdf")

Only top 10 most associations in each direction are labeled pdf file

A table of significant associations

filter(pTab.block, p.adj <=0.1) %>% mutate_if(is.numeric, formatC, digits=2) %>%
  DT::datatable()

Within M-CLL only

Only mutations occcured at least 3 times will be included in the test

p_table_M_CLL.csv

Number of significant associations per gene (10% FDR)

Volcano plots

#filter genes with significant assocaitions
useGene <- unique(filter(pTab, p.adj <=0.1)$gene)

plotList <- lapply(useGene, function(n) {
  eachTab <- filter(pTab, gene %in% n, !is.na(p)) %>%
    mutate(direction = ifelse(p.adj > 0.1, "n.s.",
                              ifelse(logFC>0, "resistant","sensitive"))) %>%
    mutate(drugLabel = ifelse(direction == "n.s.","",drug))
  
  pCut <- -log10(max(filter(eachTab, p.adj <=0.1)$p))
  
  ggplot(eachTab, aes(x=logFC, y = -log10(p))) +
    geom_point(aes(col = direction)) +
    ggrepel::geom_text_repel(aes(label = drugLabel), max.overlaps = 100) +
    scale_color_manual(values = c("n.s."="grey60","resistant" = "red","sensitive" = "blue")) +
    geom_hline(yintercept = pCut, linetype = "dashed", color = "orange") +
    ylab("-log10 (P value)") + xlab("log2 Fold Change") +
    ggtitle(sprintf("%s (mutated vs unmutated)", n)) +
    theme_bw() +
    theme(plot.title = element_text(hjust=0.5, size=15, face ="bold"),
          legend.position = "bottom")
})
plot_grid(plotlist = plotList, ncol=2)

makepdf(plotList, "../docs/volcano_M_CLL.pdf", ncol=1, nrow=1, height = 12, width = 12)

PDF version: volcano_M_CLL.pdf

Volcano plots (per drug)

Only drugs with FDR < 0.1 with at least one gene

#filter genes with significant assocaitions
useDrug <- unique(filter(pTab, p.adj <= 0.1)$drug)


plotList <- lapply(useDrug, function(n) {
  eachTab <- filter(pTab, drug %in% n, !is.na(p)) %>%
    mutate(direction = ifelse(p.adj > 0.1, "n.s.",
                              ifelse(logFC>0, "resistant","sensitive"))) 
  
  #pCut <- -log10(max(filter(eachTab, p.adj <=0.1)$p))
  pCut <- 1
  
  ggplot(eachTab, aes(x=logFC, y = -log10(p.adj))) +
    geom_point(aes(col = direction)) +
    ggrepel::geom_text_repel(data = filter(eachTab, direction != "n.s."), aes(label = gene), max.overlaps = 100) +
    scale_color_manual(values = c("n.s."="grey60","resistant" = "red","sensitive" = "blue")) +
    geom_hline(yintercept = pCut, linetype = "dashed", color = "orange") +
    ylab("-log10(adjusted P value)") + xlab("log2(fold change)") +
    ggtitle(sprintf("%s", n)) +
    theme_bw() +
    theme(plot.title = element_text(hjust=0.5, size=15, face ="bold"),
          legend.position = "bottom",
          axis.text = element_text(size=14),
          axis.title = element_text(size=14))
})
#plot_grid(plotlist = plotList, ncol=2)
makepdf(plotList, "../docs/volcano_perDrug_M_CLL.pdf", ncol=2, nrow=2, height = 10, width = 9)

PDF version: volcano_perDrug_M_CLL.pdf

Volcano plots (drug+gene)

mutNum <- colSums(geneBack,na.rm=TRUE)
plotTab <- pTab %>% mutate(direction = ifelse(p.adj > 0.1, "n.s.",
                                              ifelse(logFC>0, "resistant","sensitive"))) %>%
  mutate(num = mutNum[gene]) %>%
  mutate(featureName = paste0(drug,"\n",gene))
labelFeature <- arrange(plotTab, t)$featureName[c(1:10, (nrow(plotTab)-9):nrow(plotTab))]
plotTab <- mutate(plotTab, ifLabel = featureName %in% labelFeature)
pCut <- 1

  
ggplot(plotTab, aes(x=logFC, y = -log10(p.adj))) +
  geom_point(aes(fill = direction, size = num), shape = 21, alpha=0.5) +
  ggrepel::geom_text_repel(data = filter(plotTab, ifLabel), 
                           aes(label = featureName),
                           max.overlaps = 100) +
  scale_fill_manual(values = c("n.s."="grey60","resistant" = "red","sensitive" = "blue")) +
  geom_hline(yintercept = pCut, linetype = "dashed", color = "orange") +
  ylab("-log10(adjusted P value)") + xlab("log2(fold change)") +
  theme_bw() +
  theme(plot.title = element_text(hjust=0.5, size=15, face ="bold"),
        legend.position = "bottom",
        axis.text = element_text(size=14),
        axis.title = element_text(size=14))

ggsave("../docs/volcano_drugGene_M.pdf", height = 10, width = 10)

Only top 10 most associations in each direction are labeled pdf file

A table of significant associations

filter(pTab, p.adj <=0.1) %>% mutate_if(is.numeric, formatC, digits=2) %>%
  DT::datatable()

Within U-CLL only

Only mutations occcured at least 3 times will be included in the test

p_table_M_CLL.csv

Number of significant associations per gene (10% FDR)

Volcano plots

#filter genes with significant assocaitions
useGene <- unique(filter(pTab, p.adj <=0.1)$gene)

plotList <- lapply(useGene, function(n) {
  eachTab <- filter(pTab, gene %in% n, !is.na(p)) %>%
    mutate(direction = ifelse(p.adj > 0.1, "n.s.",
                              ifelse(logFC>0, "resistant","sensitive"))) %>%
    mutate(drugLabel = ifelse(direction == "n.s.","",drug))
  
  pCut <- -log10(max(filter(eachTab, p.adj <=0.1)$p))
  
  ggplot(eachTab, aes(x=logFC, y = -log10(p))) +
    geom_point(aes(col = direction)) +
    ggrepel::geom_text_repel(aes(label = drugLabel), max.overlaps = 100) +
    scale_color_manual(values = c("n.s."="grey60","resistant" = "red","sensitive" = "blue")) +
    geom_hline(yintercept = pCut, linetype = "dashed", color = "orange") +
    ylab("-log10 (P value)") + xlab("log2 Fold Change") +
    ggtitle(sprintf("%s (mutated vs unmutated)", n)) +
    theme_bw() +
    theme(plot.title = element_text(hjust=0.5, size=15, face ="bold"),
          legend.position = "bottom")
})
plot_grid(plotlist = plotList, ncol=2)

makepdf(plotList, "../docs/volcano_U_CLL.pdf", ncol=1, nrow=1, height = 12, width = 12)

PDF version: volcano_U_CLL.pdf

Volcano plots (per drug)

Only drugs with FDR < 0.1 with at least one gene

#filter genes with significant assocaitions
useDrug <- unique(filter(pTab, p.adj <= 0.1)$drug)


plotList <- lapply(useDrug, function(n) {
  eachTab <- filter(pTab, drug %in% n, !is.na(p)) %>%
    mutate(direction = ifelse(p.adj > 0.1, "n.s.",
                              ifelse(logFC>0, "resistant","sensitive"))) 
  
  #pCut <- -log10(max(filter(eachTab, p.adj <=0.1)$p))
  pCut <- 1
  
  ggplot(eachTab, aes(x=logFC, y = -log10(p.adj))) +
    geom_point(aes(col = direction)) +
    ggrepel::geom_text_repel(data = filter(eachTab, direction != "n.s."), aes(label = gene), max.overlaps = 100) +
    scale_color_manual(values = c("n.s."="grey60","resistant" = "red","sensitive" = "blue")) +
    geom_hline(yintercept = pCut, linetype = "dashed", color = "orange") +
    ylab("-log10(adjusted P value)") + xlab("log2(fold change)") +
    ggtitle(sprintf("%s", n)) +
    theme_bw() +
    theme(plot.title = element_text(hjust=0.5, size=15, face ="bold"),
          legend.position = "bottom",
          axis.text = element_text(size=14),
          axis.title = element_text(size=14))
})
#plot_grid(plotlist = plotList, ncol=2)
makepdf(plotList, "../docs/volcano_perDrug_U_CLL.pdf", ncol=2, nrow=2, height = 10, width = 9)

PDF version: volcano_perDrug_U_CLL.pdf

Volcano plots (drug+gene)

mutNum <- colSums(geneBack,na.rm=TRUE)
plotTab <- pTab %>% mutate(direction = ifelse(p.adj > 0.1, "n.s.",
                                              ifelse(logFC>0, "resistant","sensitive"))) %>%
  mutate(num = mutNum[gene]) %>%
  mutate(featureName = paste0(drug,"\n",gene))
labelFeature <- arrange(plotTab, t)$featureName[c(1:10, (nrow(plotTab)-9):nrow(plotTab))]
plotTab <- mutate(plotTab, ifLabel = featureName %in% labelFeature)
pCut <- 1

  
ggplot(plotTab, aes(x=logFC, y = -log10(p.adj))) +
  geom_point(aes(fill = direction, size = num), shape = 21, alpha=0.5) +
  ggrepel::geom_text_repel(data = filter(plotTab, ifLabel), 
                           aes(label = featureName),
                           max.overlaps = 100) +
  scale_fill_manual(values = c("n.s."="grey60","resistant" = "red","sensitive" = "blue")) +
  geom_hline(yintercept = pCut, linetype = "dashed", color = "orange") +
  ylab("-log10(adjusted P value)") + xlab("log2(fold change)") +
  theme_bw() +
  theme(plot.title = element_text(hjust=0.5, size=15, face ="bold"),
        legend.position = "bottom",
        axis.text = element_text(size=14),
        axis.title = element_text(size=14))

ggsave("../docs/volcano_drugGene_U.pdf", height = 10, width = 10)

Only top 10 most associations in each direction are labeled pdf file

A table of significant associations

filter(pTab, p.adj <=0.1) %>% mutate_if(is.numeric, formatC, digits=2) %>%
  DT::datatable()

Using individual concentrations

Without blocking for IGHV

p_table_noBlock_allConc.csv

Number of significant associations per gene (10% FDR)

P value heatmap

Only drugs show at least one significant association under 10% FDR

pTab.sig <- filter(pTab, p.adj <= 0.1)
plotTab <- filter(pTab, gene %in% pTab.sig$gene) %>%
  filter(Drug %in% pTab.sig$Drug) %>%
  mutate(sign = ifelse(p.adj <= 0.1, "*",""),
         pSign = -log10(p)) %>%
  mutate(pSign = ifelse(pSign > 12, 12, pSign)) %>%
  mutate(pSign = pSign * sign(logFC),
         Drug = sprintf("%s (%s)",Drug, targetFamily))

pMat <- mutate(plotTab, geneConc = paste0(gene,"_", concIndex)) %>%
  select(Drug, geneConc, pSign) %>%
  pivot_wider(names_from = geneConc, values_from = pSign) %>%
  data.frame() %>% column_to_rownames("Drug")

hc <- hclust(dist(pMat))
drugOrder <- rownames(pMat)[hc$order]

plotTab <- mutate(plotTab, Drug = factor(Drug, levels = drugOrder),
                  gene = factor(gene, levels = levels(sumTab$gene)))
ggplot(plotTab, aes(x=concIndex, y = Drug, fill = pSign)) +
  geom_tile() + geom_text(aes(label=sign), nudge_y = -0.25) +
  scale_fill_gradient2(low = "blue", mid = "white", high = "red", name ="-log10(P-value)") +
  facet_wrap(~gene, ncol =12) +
  xlab("concentration index")

* indicates assocations passed 10% FDR control

PDF version

A table of significant associations

filter(pTab, p.adj <=0.1) %>% mutate_if(is.numeric, formatC, digits=2) %>%
  left_join(select(targetAnno, drugName, target, pathway), by = c(Drug = "drugName")) %>%
  DT::datatable()

Blocking for IGHV

p_table_ighvBlock_allConc.csv

Number of significant associations per gene (10% FDR)

P value heatmap

Only drugs show at least one significant association under 10% FDR

pTab.sig <- filter(pTab, p.adj <= 0.1)
plotTab <- filter(pTab, gene %in% pTab.sig$gene) %>%
  filter(Drug %in% pTab.sig$Drug) %>%
  mutate(sign = ifelse(p.adj <= 0.1, "*",""),
         pSign = -log10(p)) %>%
  mutate(pSign = ifelse(pSign > 12, 12, pSign)) %>%
  mutate(pSign = pSign * sign(logFC),
         Drug = sprintf("%s (%s)",Drug, targetFamily))

pMat <- mutate(plotTab, geneConc = paste0(gene,"_", concIndex)) %>%
  select(Drug, geneConc, pSign) %>%
  pivot_wider(names_from = geneConc, values_from = pSign) %>%
  data.frame() %>% column_to_rownames("Drug")

hc <- hclust(dist(pMat))
drugOrder <- rownames(pMat)[hc$order]

plotTab <- mutate(plotTab, Drug = factor(Drug, levels = drugOrder),
                  gene = factor(gene, levels = levels(sumTab$gene)))
ggplot(plotTab, aes(x=concIndex, y = Drug, fill = pSign)) +
  geom_tile() + geom_text(aes(label=sign), nudge_y = -0.25) +
  scale_fill_gradient2(low = "blue", mid = "white", high = "red", name = "-log10(P-value)") +
  facet_wrap(~gene, ncol =12) +
  xlab("concentration index")

* indicates assocations passed 10% FDR control

PDF version

A table of significant associations

targetAnno <- read_csv2("../data/targetAnnotation_all.csv") %>%
  mutate(drugName = nameEMBL2016)

filter(pTab, p.adj <=0.1) %>% mutate_if(is.numeric, formatC, digits=2) %>%
  left_join(select(targetAnno, drugName, target, pathway), by = c(Drug = "drugName")) %>%
  DT::datatable()

Drug responses associated with IGHV

Volcano plot Drugs colored by blue are more effective in U-CLL samples. The names of the drugs that show significant associations and effect size above 10% in at least 3 concentrations are labeled. Dashed line indicates 5% FDR

As expected, M-CLL samples show increased resistance to a lot of drugs.

Drug responses associated with Trisomy12

For all CLLs

How many triosmy12 samples?

tri12Tab <- distinct(viabTab, patientID, .keep_all = TRUE)
tri12Tab %>% filter(trisomy12 == 1) %>% nrow()
[1] 23

Volcano plot (10% FDR cut-off) for combined concentrations Drugs colored by blue are more effective in samples with trisomy12. The names of the drugs that show significant associations in at least 2 concentrations are labeled. Dashed line indicates 10% FDR.

Compared to other datasets, more associations between increased drug resistance and trisomy12 are identified. But fewer associations between increased sensitivity and trisomy12 are identified.

Volcation plots for individual concentrations

Beeswarm plots for all drug at all concentrations

Drug_VS_trisomy12_allConc.pdf

For M CLLs only

Volcano plot (combined concentrations)

Volcation plots for individual concentrations

Beeswarm plots for all drug at all concentrations

Drug_VS_trisomy12_allConc_M-CLL.pdf

For U CLLs

Volcano plot (combined concentrations)

Volcation plots for individual concentrations

Beeswarm plots for all drug at all concentrations

Drug_VS_trisomy12_allConc_U-CLL.pdf

Drug responses associated with DDX3X

For U-CLLs only

viabTab <- screenData %>%
  filter(diagnosis %in% "CLL") %>% 
  dplyr::select(patientID, viab, concIndex, Drug) %>%
  group_by(patientID, concIndex, Drug) %>% summarise(viab= mean(viab)) %>%
  ungroup() %>%
  mutate(ighv = patBack[match(patientID, patBack$Patient.ID),]$IGHV.status,
         ddx3x = patBack[match(patientID, patBack$Patient.ID),]$DDX3X)

Correlation between DDX3X and IGHV

ddx3tab <- distinct(viabTab, patientID, .keep_all = TRUE) 
table(ddx3tab$ddx3x, ddx3tab$ighv)
   
     M  U
  0 67 55
  1  0  5

How many significant associations at 10% FDR?

filter(pTab, p.adj <= 0.1)
# A tibble: 0 × 6
# … with 6 variables: Drug <fct>, concIndex <fct>, p <dbl>, diff <dbl>,
#   p.adj <dbl>, ifSig <lgl>
# ℹ Use `colnames()` to see all variable names

No significant associations, could be the DDX3X mutated cases are too few?

Volcano plot for combined concentrations (0.05 raw-palue cut-off)

Volcation plots for individual concentrations

Note that the dash line indicates raw p value of 0.05, not 10% FDR

Beeswarm plots for all drug at all concentrations

Drug_VS_DDX3X_allConc.pdf

Co-occurrence of genomic variance

Detecting interactions by chi-square test

chiTab <- lapply(seq(2, ncol(geneBack)), function(i) {
  lapply(seq(1,i-1), function(j) {
    var1 <- geneBack[,i]
    var2 <- geneBack[,j]
    
    pval <- tryCatch(chisq.test(var1,var2)$p.value,
             error = function(n) NA)
          
    tibble(geneA = colnames(geneBack)[i],
           geneB = colnames(geneBack[j]),
           p = pval)
  }) %>% bind_rows()
}) %>% bind_rows() %>% 
  mutate(p.adj = p.adjust(p, method = "BH")) %>%
  arrange(p)

Gene pairs that have significant interactions (5% FDR)

chiTab %>% filter(p.adj < 0.1) %>% print(n=40)
# A tibble: 9 × 4
  geneA     geneB              p    p.adj
  <chr>     <chr>          <dbl>    <dbl>
1 TP53      del17p    0.00000415 0.000956
2 trisomy19 trisomy12 0.00000581 0.000956
3 EGR2      DDX3X     0.00000721 0.000956
4 IgH_break del5IgH   0.0000119  0.00119 
5 ATM       del11q    0.0000181  0.00144 
6 gain8q    del8p     0.0000374  0.00248 
7 trisomy12 del13q    0.0000439  0.00250 
8 FAT4      ATM       0.0000579  0.00288 
9 TP53      del5IgH   0.000407   0.0180  

sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur/Monterey 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] forcats_0.5.1       stringr_1.4.1       dplyr_1.0.9        
 [4] purrr_0.3.4         readr_2.1.2         tidyr_1.2.0        
 [7] tibble_3.1.8        tidyverse_1.3.2     limma_3.52.2       
[10] IHW_1.24.0          readxl_1.4.0        gtable_0.3.0       
[13] ggbeeswarm_0.6.0    jyluMisc_0.1.5      colorspace_2.0-3   
[16] RColorBrewer_1.1-3  ggrepel_0.9.1       ggplot2_3.3.6      
[19] cowplot_1.1.1       genefilter_1.78.0   pheatmap_1.0.12    
[22] reshape2_1.4.4      gridExtra_2.3       Biobase_2.56.0     
[25] BiocGenerics_0.42.0

loaded via a namespace (and not attached):
  [1] utf8_1.2.2                  shinydashboard_0.7.2       
  [3] tidyselect_1.1.2            RSQLite_2.2.15             
  [5] AnnotationDbi_1.58.0        htmlwidgets_1.5.4          
  [7] grid_4.2.0                  BiocParallel_1.30.3        
  [9] maxstat_0.7-25              munsell_0.5.0              
 [11] ragg_1.2.2                  codetools_0.2-18           
 [13] DT_0.23                     withr_2.5.0                
 [15] highr_0.9                   knitr_1.39                 
 [17] rstudioapi_0.13             stats4_4.2.0               
 [19] ggsignif_0.6.3              labeling_0.4.2             
 [21] MatrixGenerics_1.8.1        git2r_0.30.1               
 [23] slam_0.1-50                 GenomeInfoDbData_1.2.8     
 [25] lpsymphony_1.24.0           KMsurv_0.1-5               
 [27] farver_2.1.1                bit64_4.0.5                
 [29] rprojroot_2.0.3             vctrs_0.4.1                
 [31] generics_0.1.3              TH.data_1.1-1              
 [33] xfun_0.31                   sets_1.0-21                
 [35] R6_2.5.1                    GenomeInfoDb_1.32.2        
 [37] bitops_1.0-7                cachem_1.0.6               
 [39] fgsea_1.22.0                DelayedArray_0.22.0        
 [41] assertthat_0.2.1            vroom_1.5.7                
 [43] promises_1.2.0.1            scales_1.2.0               
 [45] multcomp_1.4-19             googlesheets4_1.0.0        
 [47] beeswarm_0.4.0              sandwich_3.0-2             
 [49] workflowr_1.7.0             rlang_1.0.6                
 [51] systemfonts_1.0.4           splines_4.2.0              
 [53] rstatix_0.7.0               gargle_1.2.0               
 [55] broom_1.0.0                 BiocManager_1.30.18        
 [57] yaml_2.3.5                  abind_1.4-5                
 [59] modelr_0.1.8                crosstalk_1.2.0            
 [61] backports_1.4.1             httpuv_1.6.6               
 [63] tools_4.2.0                 relations_0.6-12           
 [65] ellipsis_0.3.2              gplots_3.1.3               
 [67] jquerylib_0.1.4             Rcpp_1.0.9                 
 [69] plyr_1.8.7                  visNetwork_2.1.0           
 [71] zlibbioc_1.42.0             RCurl_1.98-1.7             
 [73] ggpubr_0.4.0                S4Vectors_0.34.0           
 [75] zoo_1.8-10                  SummarizedExperiment_1.26.1
 [77] haven_2.5.0                 cluster_2.1.3              
 [79] exactRankTests_0.8-35       fs_1.5.2                   
 [81] magrittr_2.0.3              data.table_1.14.2          
 [83] reprex_2.0.1                survminer_0.4.9            
 [85] googledrive_2.0.0           mvtnorm_1.1-3              
 [87] matrixStats_0.62.0          hms_1.1.1                  
 [89] shinyjs_2.1.0               mime_0.12                  
 [91] evaluate_0.15               xtable_1.8-4               
 [93] XML_3.99-0.10               IRanges_2.30.0             
 [95] compiler_4.2.0              KernSmooth_2.23-20         
 [97] crayon_1.5.2                htmltools_0.5.3            
 [99] later_1.3.0                 tzdb_0.3.0                 
[101] lubridate_1.8.0             DBI_1.1.3                  
[103] dbplyr_2.2.1                MASS_7.3-58                
[105] BiocStyle_2.24.0            Matrix_1.4-1               
[107] car_3.1-0                   cli_3.4.1                  
[109] marray_1.74.0               parallel_4.2.0             
[111] igraph_1.3.4                GenomicRanges_1.48.0       
[113] pkgconfig_2.0.3             km.ci_0.5-6                
[115] piano_2.12.0                xml2_1.3.3                 
[117] annotate_1.74.0             vipor_0.4.5                
[119] bslib_0.4.1                 XVector_0.36.0             
[121] drc_3.0-1                   rvest_1.0.2                
[123] digest_0.6.30               Biostrings_2.64.0          
[125] rmarkdown_2.14              cellranger_1.1.0           
[127] fastmatch_1.1-3             survMisc_0.5.6             
[129] shiny_1.7.3                 gtools_3.9.3               
[131] lifecycle_1.0.3             jsonlite_1.8.3             
[133] carData_3.0-5               fansi_1.0.3                
[135] pillar_1.8.0                lattice_0.20-45            
[137] KEGGREST_1.36.3             fastmap_1.1.0              
[139] httr_1.4.3                  plotrix_3.8-2              
[141] survival_3.4-0              glue_1.6.2                 
[143] fdrtool_1.2.17              png_0.1-7                  
[145] bit_4.0.4                   stringi_1.7.8              
[147] sass_0.4.2                  blob_1.2.3                 
[149] textshaping_0.3.6           caTools_1.18.2             
[151] memoise_2.0.1